Skip to main content

Ballot Theorems, Old and New

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 17))

Abstract

We begin by sketching the development of the classical ballot theorem as it first appeared in the Comptes Rendus de 1’Academie des Sciences. The statement that is fairly called the first Ballot Theorem was due to Bertrand: Theorem 1 ([8]). We suppose that two candidates have been submitted to a vote in which the number of voters is μ. Candidate A obtains n votes and is elected; candidate B obtains m = μ − n votes. We ask for the probability that during the counting of the votes, the number of votes for A is at all times greater than the number of votes for B. This probability is (2nμ)/μ = (nm)/(n + m).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erik Sparre Andersen, Fluctuations of sums of random variables, Mathematica Scandinavica, 1 (1953), 263–285.

    MATH  MathSciNet  Google Scholar 

  2. Erik Sparre Andersen, Fluctuations of sums of random variables ii, Mathematica Scandinavica, 2 (1954), 195–223.

    MATH  MathSciNet  Google Scholar 

  3. Désiré André, Solution directe du probleme resolu par M. Bertrand, Comptes Rendus de l’Academie des Sciences, 105 (1887), 436–437.

    Google Scholar 

  4. N. Balakrishnan, Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkhäuser, Boston, MA, first edition (1997).

    MATH  Google Scholar 

  5. Émile Barbier, Generalisation du probleme resolu par M. J. Bertrand, Comptes Rendus de l’Academie des Sciences, 105 (1887), 407.

    Google Scholar 

  6. J. Bertrand, Observations, Comptes Rendus de l’Academie des Sciences, 105 (1887), 437–439.

    Google Scholar 

  7. J. Bertrand, Sur un paradox analogue au problème de Saint-Pétersburg, Comptes Rendus de l’Academie des Sciences, 105 (1887), 831–834.

    Google Scholar 

  8. J. Bertrand, Solution d’un probleme, Comptes Rendus de l’Academie des Sciences, 105 (1887), 369.

    Google Scholar 

  9. Aryeh Dvoretzky and Theodore Motzkin, A problem of arrangements, Duke Mathematical Journal, 14 (1947), 305–313.

    Article  MATH  MathSciNet  Google Scholar 

  10. Meyer Dwass, A fluctuation theorem for cyclic random variables, The Annals of Mathematical Statistics, 33(4) (December 1962), 1450–1454.

    Article  MathSciNet  Google Scholar 

  11. William Feller, An Introduction to Probability Theory and Its Applications, Volume 1, volume 1. John Wiley & Sons, Inc, third edition (1968).

    Google Scholar 

  12. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, Saunders Mathematics Books. W. B. Saunders Company (1969).

    Google Scholar 

  13. Philip S. Griffin and Terry R. McConnell, On the position of a random walk at the time of first exit from a sphere, The Annals of Probability, 20(2) (April 1992), 825–854.

    Article  MATH  MathSciNet  Google Scholar 

  14. Philip S. Griffin and Terry R. McConnell, Gambler’s ruin and the first exit position of random walk from large spheres, The Annals of Probability, 22(3) (July 1994), 1429–1472.

    Article  MATH  MathSciNet  Google Scholar 

  15. Howard D. Grossman. Fun with lattice-points, Duke Mathematical Journal, 14 (1950), 305–313.

    Google Scholar 

  16. A. Hald, A History of Probability and Statistics and Their Applications before 1750, John Wiley & Sons, Inc, New York, NY (1990).

    MATH  Google Scholar 

  17. Olav Kallenberg, Foundations of Modern Probability, Probability and Its Applications, Springer Verlag, second edition (2003).

    Google Scholar 

  18. Olav Kallenberg, Ballot theorems and sojourn laws for stationary processes, The Annals of Probability, 27(4) (1999), 2011–2019.

    Article  MATH  MathSciNet  Google Scholar 

  19. Harry Kesten, Sums of independent random variables — without moment conditions, Annals of Mathematical Statistics, 43(3) (June 1972), 701–732.

    Article  MATH  MathSciNet  Google Scholar 

  20. Harry Kesten, Frank spitzer’s work on random walks and Brownian motion, Annals of Probability, 21(2) (April 1993), 593–607.

    Article  MATH  MathSciNet  Google Scholar 

  21. Harry Kesten and R. A. Maller, Infinite limits and infinite limit points of random walks and trimmed sums, The Annals of Probability, 22(3) (1994), 1473–1513.

    Article  MATH  MathSciNet  Google Scholar 

  22. Takis Konstantopoulos, Ballot theorems revisited, Statistics & Probability Letters, 24(4) (September 1995), 331–338.

    Article  MATH  MathSciNet  Google Scholar 

  23. Sri Gopal Mohanty, An urn problem related to the ballot problem, The American Mathematical Monthly, 73(5) (1966), 526–528.

    Article  MATH  MathSciNet  Google Scholar 

  24. Émile Rouché. Sur la durée du jeu, Comptes Rendus de l’Academie des Sciences, 106 (1888), 253–256.

    Google Scholar 

  25. Émile Rouché, Sur un problème relatif à la durée du jeu, Comptes Rendus de l’Academie des Sciences, 106 (1888), 47–49.

    Google Scholar 

  26. Frank Spitzer, A combinatorial lemma and its applications to probability theory, Transactions of the American Mathematical Society, 82(2) (July 1956), 323–339.

    Article  MATH  MathSciNet  Google Scholar 

  27. Charles J. Stone, On local and ratio limit theorems, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (1965), pp. 217–224.

    Google Scholar 

  28. Lajos Takács, Ballot problems, Zeitschrift für Warscheinlichkeitstheorie und verwandte Gebeite, 1 (1962), 154–158.

    Article  MATH  Google Scholar 

  29. Lajos Takács, A generalization of the ballot problem and its application in the theory of queues, Journal of the American Statistical Association, 57(298) (1962), 327–337.

    Article  MATH  MathSciNet  Google Scholar 

  30. Lajos Takács, The time dependence of a single-server queue with poisson input and general service times, The Annals of Mathematical, 33(4) (December 1962), 1340–1348.

    MATH  Google Scholar 

  31. Lajos Takács, The distribution of majority times in a ballot, Zeitschrift für Warscheinlichkeitstheorie und verwandte Gebeite, 2(2) (January 1963), 118–121.

    Article  MATH  Google Scholar 

  32. Lajos Takács, Combinatorial methods in the theory of dams, Journal of Applied Probability, 1(1) (1964), 69–76.

    Article  MATH  MathSciNet  Google Scholar 

  33. Lajos Takács, Fluctuations in the ratio of scores in counting a ballot, Journal of Applied Probability, 1(2) (1964), 393–396.

    Article  MATH  MathSciNet  Google Scholar 

  34. Lajos Takács, A combinatorial theorem for stochastic processes, Bulletin of the American Mathematical Society, 71 (1965), 649–650.

    Article  MATH  MathSciNet  Google Scholar 

  35. Lajos Takács, On the distribution of the supremum for stochastic processes with interchangeable increments, Transactions of the American Mathematical Society, 119(3) (September 1965), 367–379.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lajos Takács, Combinatorial Methods in the Theory of Stochastic Processes, John Wiley & Sons, Inc, New York, NY, first edition (1967).

    MATH  Google Scholar 

  37. Lajos Takács, On the distribution of the maximum of sums of mutually independent and identically distributed random variables, Advances in Applied Probability, 2(2) (1970), 344–354.

    Article  MATH  MathSciNet  Google Scholar 

  38. Lajos Takács, On the distribution of the supremum for stochastic processes, Annales de l’Institut Henri Poincaré B, 6(3) (1970), 237–247.

    MATH  Google Scholar 

  39. J. C. Tanner, A derivation of the borel distribution, Biometrika, 48(1–2) (June 1961), 222–224.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Addario-Berry, L., Reed, B.A. (2008). Ballot Theorems, Old and New. In: Győri, E., Katona, G.O.H., Lovász, L., Sági, G. (eds) Horizons of Combinatorics. Bolyai Society Mathematical Studies, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77200-2_1

Download citation

Publish with us

Policies and ethics