Skip to main content

Topological Derivatives for Shape Reconstruction

  • Chapter
Inverse Problems and Imaging

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1943))

Topological derivative methods are used to solve constrained optimization reformulations of inverse scattering problems. The constraints take the form of Helmholtz or elasticity problems with different boundary conditions at the interface between the surrounding medium and the scatterers. Formulae for the topological derivatives are found by first computing shape derivatives and then performing suitable asymptotic expansions in domains with vanishing holes. We discuss integral methods for the numerical approximation of the scatterers using topological derivatives and implement a fast iterative procedure to improve the description of their number, size, location and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, pp. 841–853, 1997.

    Article  Google Scholar 

  2. P. J. Michielsen K., DeRaedt H. and G. N, “Computer simulation of time-resolved optical imaging of objects hidden in turbid media,” Phys. Reports 304, pp. 90–144, 1998.

    Article  Google Scholar 

  3. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Laser. Surg. Med. 26(2), pp. 119–129, 2000.

    Article  Google Scholar 

  4. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, pp. 6535–6546, 1992.

    Article  Google Scholar 

  5. M. Rowe, E. Pungh, J. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20, pp. 608–610, 1995.

    Article  Google Scholar 

  6. S. Demos and R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, pp. 161–163, 1996.

    Article  Google Scholar 

  7. M. Moscoso, J. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissues,” J. Opt. Soc. Am. A 18, No. 4, pp. 948–960, 2001.

    Article  MathSciNet  Google Scholar 

  8. S. Chandrasekhar, Radiative Transfer, Oxford University Press, Cambridge, 1960.

    Google Scholar 

  9. A. Kim and M. Moscoso, “Chebyshev spectral methods for radiative transfer,” SIAM J. Sci. Comput. 23, No.6, pp. 2075–2095, 2002.

    Article  MathSciNet  Google Scholar 

  10. B. C. Wilson and S. Jacques, “Optical reflectance and transmittance of tissues: Principles and applications,” IEEE Quant. Electron. 26, pp. 2186–2199, 1990.

    Article  Google Scholar 

  11. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, pp. 1310–1312, 1996.

    Article  Google Scholar 

  12. L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, pp. 327–370, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Kim and M. Moscoso, “Influence of the relative refractive index on depolarization of multiply scattered waves,” Physical Review E 64, p. 026612, 2001.

    Article  Google Scholar 

  14. A. Kim and M. Moscoso, “Backscattering of circularly polarized pulses,” Opt. Letters. 27, pp. 1589–1591, 2002.

    Article  Google Scholar 

  15. B. Beauvoit, T. Kitai, and B. Chance, “Contribution to the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, pp. 2501–2510, 1994.

    Article  Google Scholar 

  16. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, pp. 3586–3593, 1998.

    Article  Google Scholar 

  17. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, New York : J. Wiley Sons, 1986.

    Book  MATH  Google Scholar 

  18. E. E. Lewis and W. F. Miller Jr., Computational Methods of Neutron Transport, John Wiley and sons, New York, 1984.

    Google Scholar 

  19. G. Bal, G. Papanicolaou, and L. Ryzhik, “Probabilistic Theory of Transport Processes with Polarization,” SIAM Appl. Math. 60, pp. 1639–1666, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Kalos, “On the estimation of flux at a point by Monte Carlo,” Nucl. Sci. Eng. 16, pp. 111–117, 1963.

    Google Scholar 

  21. P. Bruscaglioni, G. Zaccanti, and Q. Wei, “Transmission of a pulse polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, pp. 6142–6150, 1993.

    Article  Google Scholar 

  22. E. Tinet, S. Avrillier, and M. Tualle, “Fast semianalytical monte carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, pp. 1903–1915, 1996.

    Article  Google Scholar 

  23. S. Chatigny, M. Morin, D. Asselin, Y. Painchaud, and P. Beaudry, “Hybrid monte carlo for photon transport through optically thick scattering media.,” Appl. Opt. 38, pp. 6075–6086, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carpio, A., Rapún, M.L. (2008). Topological Derivatives for Shape Reconstruction. In: Bonilla, L.L. (eds) Inverse Problems and Imaging. Lecture Notes in Mathematics, vol 1943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78547-7_5

Download citation

Publish with us

Policies and ethics