Skip to main content

An Introduction to Stochastic Epidemic Models

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

A brief introduction to the formulation of various types of stochastic epidemic models is presented based on the well-known deterministic SIS and SIR epidemic models. Three different types of stochastic model formulations are discussed: discrete time Markov chain, continuous time Markov chain and stochastic differential equations. Properties unique to the stochastic models are presented: probability of disease extinction, probability of disease outbreak, quasistationary probability distribution, final size distribution, and expected duration of an epidemic. The chapter ends with a discussion of two stochastic formulations that cannot be directly related to the SIS and SIR epidemic models. They are discrete time Markov chain formulations applied in the study of epidemics within households (chain binomial models) and in the prediction of the initial spread of an epidemic (branching processes).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey, H.: An examination of the Reed–Frost theory of epidemics. Hum. Biol., 24, 201–233 (1952)

    Google Scholar 

  2. Abramson, G., Kenkre, V. M.: Spatiotemporal patterns in hantavirus infection. Phys. Rev. E, 66, 1–5 (2002)

    Article  Google Scholar 

  3. Abramson, G., Kenkre, V. M., Yates, T. L., Parmenter, R. R.: Traveling waves of infection in the hantavirus epidemics. Bull. Math. Biol., 65, 519–534 (2003)

    Article  Google Scholar 

  4. Ackerman, E., Elveback, L. R., Fox, J. P.: Simulation of Infectious Disease Epidemics. Charles C. Thomas, Springfield, IL (1984)

    Google Scholar 

  5. Allen, E. J.: Stochastic differential equations and persistence time for two interacting populations. Dyn. Contin. Discrete Impulsive Syst., 5, 271–281 (1999)

    MATH  Google Scholar 

  6. Allen, L. J. S.: An Introduction to Stochastic Processes with Applications to Biology. Prentice Hall, Upper Saddle River, NJ (2003)

    Google Scholar 

  7. Allen, L. J. S., Allen, E. J.: A comparison of three different stochastic population models with regard to persistence time. Theor. Popul. Biol., 64, 439–449 (2003)

    Article  MATH  Google Scholar 

  8. Allen, L. J. S., Burgin, A. M.: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci., 163, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Allen, L. J. S., Langlais, M., Phillips, C.: The dynamics of two viral infections in a singlehost population with applications to hantavirus. Math. Biosci., 186, 191–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Anderson, R. M., May, R. M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1992)

    Google Scholar 

  11. Antia, R., Regoes, R. R., Koella, J. C., Bergstrom, C. T.: The role of evolution in the emergence of infectious diseases. Nature, 426, 658–661 (2003)

    Article  Google Scholar 

  12. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  13. Bailey, N. T. J.: The Elements of Stochastic Processes with Applications to the Natural Sciences. Wiley, New York (1990)

    MATH  Google Scholar 

  14. Ball, F. G., Lyne, O. D.: Epidemics among a population of households. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, A. -A. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. Springer, Berlin Heidelberg New York, pp. 115–142 (2002)

    Google Scholar 

  15. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin Heidelberg New York (2001)

    MATH  Google Scholar 

  16. Brauer, F., van den Driessche, P.: Some directions for mathematical epidemiology. In: Ruan, S., Wolkowicz, G. S. K., Wu, J. (eds.) Dynamical Systems and Their Applications to Biology. Fields Institute Communications 36, AMS, Providence, RI, pp. 95–112 (2003)

    Google Scholar 

  17. Daley, D. J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Vol. 15. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Darroch, J. N., Seneta, E.: On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Probab., 4, 192–196 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  19. Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)

    Google Scholar 

  20. Foster, F. G.: A note on Bailey’s and Whittle’s treatment of a general stochastic epidemic. Biometrika, 42, 123–125 (1955)

    MATH  MathSciNet  Google Scholar 

  21. Gard, T. C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  22. Goel, N. S., Richter-Dyn, N.: Stochastic Models in Biology. Academic, New York (1974)

    Google Scholar 

  23. Greenwood, M.: On the statistical measure of infectiousness. J. Hyg. Cambridge 31, 336–351 (1931)

    Article  Google Scholar 

  24. Harris, T. E.: The Theory of Branching Processes. Springer, Berlin Heidelberg New York (1963)

    MATH  Google Scholar 

  25. Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335–356 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hethcote, H. W.: The mathematics of infectious diseases. SIAM Rev., 42, 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Isham, V.: Assessing the variability of stochastic epidemics. Math. Biosci., 107, 209–224 (1991)

    Article  MATH  Google Scholar 

  28. Jacquez, J. A., Simon, C. P.: The stochastic SI epidemic model with recruitment and deaths I. Comparison with the closed SIS model. Math. Biosci., 117, 77–125 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jagers, P.: Branching Processes with Biological Applications. Wiley, London (1975)

    MATH  Google Scholar 

  30. Kimmel, M., Axelrod, D. E.: Branching Processes in Biology. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  31. Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin Heidelberg New York (1992)

    MATH  Google Scholar 

  32. Kloeden, P. E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  33. Leigh, E. G.: The average lifetime of a population in a varying environment. J. Theor. Biol., 90, 213–219 (1981)

    Article  MathSciNet  Google Scholar 

  34. Lloyd, A. L.: Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques. Theor. Popul. Biol., 65, 49–65 (2004)

    Article  MATH  Google Scholar 

  35. Mode, C. J.: Multitype Branching Processes. Elsevier, New York (1971)

    MATH  Google Scholar 

  36. Mode, C. J., Sleeman, C. K.: Stochastic Processes in Epidemiology. HIV/AIDS, Other Infectious Diseases and Computers. World Scientific, Singapore (2000)

    Google Scholar 

  37. Murray, J. D., Stanley, E. A., Brown, D. L.: On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B, 229, 111–150 (1986)

    Article  Google Scholar 

  38. Nasell, I.: The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Probab., 28, 895–932 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nasell, I.: On the quasi-stationary distribution of the stochastic logistic epidemic. Math. Biosci., 156, 21–40 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nasell, I.: Endemicity, persistence, and quasi-stationarity. In: Castillo-Chavez, C. with Blower, S., van den Driessche, P., Kirschner, D., Yakubu, A. -A. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases an Introduction. Springer, Berlin Heidelberg New York, pp. 199–227 (2002)

    Google Scholar 

  41. Nisbet, R. M., Gurney, W. S. C.: Modelling Fluctuating Populations. Wiley, Chichester (1982)

    MATH  Google Scholar 

  42. Norden, R. H.: On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Probab., 14, 687–708 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ortega, J. M.: Matrix Theory a Second Course. Plenum, New York (1987)

    MATH  Google Scholar 

  44. Sauvage, F., Langlais, M., Yoccoz, N. G., Pontier, D.: Modelling hantavirus in fluctuating populations of bank voles: the role of indirect transmission on virus persistence. J. Anim. Ecol., 72, 1–13 (2003)

    Article  Google Scholar 

  45. Schinazi, R. B.: Classical and Spatial Stochastic Processes. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  46. Suppo, Ch., Naulin, J. M., Langlais, M., Artois, M.: A modelling approach to vaccination and contraception programmes for rabies control in fox populations. Proc. R. Soc. Lond. B, 267, 1575–1582 (2000)

    Article  Google Scholar 

  47. Taylor, H. M., Karlin, S.: An Introduction to Stochastic Modeling, 3rd edn. Academic, San Diego (1998)

    MATH  Google Scholar 

  48. Thieme, H. R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allen, L.J.S. (2008). An Introduction to Stochastic Epidemic Models. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_3

Download citation

Publish with us

Policies and ethics