Skip to main content

On Prime-Order Elliptic Curves with Embedding Degrees k = 3, 4, and 6

  • Conference paper
Algorithmic Number Theory (ANTS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5011))

Included in the following conference series:

Abstract

We further analyze the solutions to the Diophantine equations from which prime-order elliptic curves of embedding degrees k = 3,4 or 6 (MNT curves) may be obtained. We give an explicit algorithm to generate such curves. We derive a heuristic lower bound for the number E(z) of MNT curves with k = 6 and discriminant D ≤ z, and compare this lower bound with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp. 61(203), 29–68 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barreto, P.S.L.M., Galbraith, S., O’hEigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42, 239–271 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Computational Algebra Group: The Magma computational algebra system for algebra, number theory and geometry. School of Mathematics and Statistics, University of Sydney, http://magma.maths.usyd.edu.au/magma

  4. Franklin, M., Boneh, D.: Identity based encryption from the Weil pairing. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  5. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive Report 2006/372 (2006), http://eprint.iacr.org/2006/372/

  6. Granville, A.: ABC allows us to count squarefrees. International Mathematical Research Notices 19, 991–1009 (1998)

    Article  MathSciNet  Google Scholar 

  7. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)

    Article  MathSciNet  Google Scholar 

  8. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 383–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Karabina, K.: On prime-order elliptic curves with embedding degrees 3,4 and 6. Master’s thesis, University of Waterloo (2006), http://uwspace.uwaterloo.ca/handle/10012/2671

  10. Lenstra Jr., H.W.: Solving the Pell equation. Notices Amer. Math. Soc. 49, 182–192 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Luca, F., Shparlinski, I.E.: Elliptic curves with low embedding degree. Journal of Cryptology 19, 553–562 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Marcus, D.A.: Number fields. Springer, New York (1977)

    MATH  Google Scholar 

  13. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39, 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals E84-A, 1234–1243 (2001)

    Google Scholar 

  15. Mollin, R.A.: Fundamental number theory with applications. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  16. Mollin, R.A.: Simple continued fraction solutions for Diophantine equations. Expositiones Mathematicae 19, 55–73 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Page, D., Smart, N.P., Vercauteren, F.: A comparison of MNT curves and supersingular curves. Applicable Algebra in Engineering, Communication and Computing 17, 379–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ricci, G.: Ricerche aritmetiche sui polinomi. Rend. Circ. Mat. Palermo. 57, 433–475 (1933)

    Article  MATH  Google Scholar 

  19. Robertson, J.P.: Solving the generalized Pell equation x 2 − dy 2 = n (2004), http://hometown.aol.com/jpr2718/

  20. Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Designs, Codes and Cryptography 38, 209–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shacham, H., Boneh, D., Lynn, B.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred J. van der Poorten Andreas Stein

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karabina, K., Teske, E. (2008). On Prime-Order Elliptic Curves with Embedding Degrees k = 3, 4, and 6. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79456-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79455-4

  • Online ISBN: 978-3-540-79456-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics