Skip to main content

Sample Path Properties of Anisotropic Gaussian Random Fields

  • Chapter
Book cover A Minicourse on Stochastic Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1962))

Anisotropic Gaussian random fields arise in probability theory and in various applications. Typical examples are fractional Brownian sheets, operator-scaling Gaussian fields with stationary increments, and the solution to the stochastic heat equation.

This paper is concerned with sample path properties of anisotropic Gaussian random fields in general. Let \(X = \left\{ {X\left( t \right),t \in {\rm{R}}^N } \right\}\) be a Gaussian random field with values in Rd and with parameters H1,…,HN. Our goal is to characterize the anisotropic nature of X in terms of its parameters explicitly.

Under some general conditions, we establish results on the modulus of continuity, small ball probabilities, fractal dimensions, hitting probabilities and local times of anisotropic Gaussian random fields. An important tool for our study is the various forms of strong local nondeterminism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Adler (1981), The Geometry of Random Fields. John Wiley & Sons Ltd.,New York.

    MATH  Google Scholar 

  2. L. Arnold and P. Imkeller (1996), Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory. S toch. P rocess.Appl. 62, 19–54.

    MATH  MathSciNet  Google Scholar 

  3. A. Ayache (2004), Hausdorff dimension of the graph of the fractional Brownian sheet. Rev. Mat. Iberoamericana, 20, 395–412.

    MATH  MathSciNet  Google Scholar 

  4. A. Ayache, S. Leger and M. Pontier (2002), Drap Brownien fractionnaire.Potential Theory 17, 31–43.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ayache and M. S. Taqqu (2003), Rate optimality of wavelet series approximations of fractional Brownian sheet. J. Fourier Anal. Appl. 9,451–471.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ayache, D. Wu and Y. Xiao (2006), Joint continuity of the local times of fractional Brownian sheets. Ann. Inst. H. Poincaré Probab. Statist., (to appear).

    Google Scholar 

  7. A. Ayache and Y. Xiao (2005), Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J. Fourier Anal. Appl. 11, 407–439.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Balan and D. Kim (2006), The stochastic heat equation driven by a Gaussian noise: Markov property. Preprint.

    Google Scholar 

  9. E. Belinski and W. Linde (2002), Small ball probabilities of fractional Brow-nian sheets via fractional integration operators. J. Theoret. Probab. 15,589–612.

    Article  MathSciNet  Google Scholar 

  10. A. Benassi, S. Jaffard and D. Roux (1997), Elliptic Gaussian random processes.Rev. Mat. Iberoamericana 13, 19–90.

    MATH  MathSciNet  Google Scholar 

  11. D. A. Benson, M. M. Meerschaert, B. Baeumer and H. P. Scheffler (2006),Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resources Research 42, no. 1, W01415 (18 pp.).

    Article  Google Scholar 

  12. C. Berg and G. Forst (1975), Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, New York-Heidelberg.

    MATH  Google Scholar 

  13. S. M. Berman (1972), Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46, 63–86.

    MATH  MathSciNet  Google Scholar 

  14. S. M. Berman (1973), Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23, 69–94.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Biermé, A. Estrade, M. M. Meerschaert and Y. Xiao (2008), Sample path

    Google Scholar 

  16. H. Biermé, C. Lacaux and Y. Xiao (2007), Hitting probabilities and the Haus-dorff dimension of the inverse images of anisotropic Gaussian random fields.Preprint.

    Google Scholar 

  17. H. Biermé, M. M. Meerschaert and H.-P. Scheffler (2007), Operator scaling stable random fields. Stoch. Process. Appl. 117, 312–332.

    Article  MATH  Google Scholar 

  18. A. Bonami and A. Estrade (2003), Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9, 215–236.

    Article  MATH  MathSciNet  Google Scholar 

  19. J, Cuzick and J. DuPreez (1982), Joint continuity of Gaussian local times.Ann. Probab. 10, 810–817.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. C. Dalang (1999), Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4, no. 6,1–29. Erratum in Electron. J. Probab. 6 (2001), no. 6, 1–5.

    MathSciNet  Google Scholar 

  21. R. C. Dalang and N. E. Frangos (1998), The stochastic wave equation in two spatial dimensions. Ann. Probab. 26, 187–212.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. C. Dalang, D. Khoshnevisan and E. Nualart (2007), Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. Latin Amer. J. Probab. Statist. (Alea) 3, 231–271.

    MathSciNet  MATH  Google Scholar 

  23. R. C. Dalang, D. Khoshnevisan and E. Nualart (2007), Hitting probabilities for the non-linear stochastic heat equation with multiplicative noise. Submitted.

    Google Scholar 

  24. R. C. Dalang and C. Mueller (2003), Some non-linear s.p.e.e.'s that are second order in time. Electron. J. Probab. 8, No. 1, 1–21.

    MathSciNet  Google Scholar 

  25. R. C. Dalang, C. Mueller and L. Zambotti, (2006), Hitting properties of parabolic s.p.d.e.'s with reflection. Ann. Probab. 34, 1423–1450.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. C. Dalang and E. Nualart (2004), Potential theory for hyperbolic SPDEs. Ann. Probab. 32, 2099–2148.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. C. Dalang and M. Sanz-Solé (2005), Regularity of the sample paths of a class of second-order spde's. J. Funct. Anal. 227, 304–337.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. C. Dalang and M. Sanz-Solé (2007), Hölder regularity of the solution to the stochastic wave equation in dimension three. Memoirs Amer. Math. Soc.,(to appear).

    Google Scholar 

  29. S. Davies and P. Hall (1999), Fractal analysis of surface roughness by using spatial data (with discussion). J. Roy. Statist. Soc. Ser. B 61, 3–37.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Doukhan, G. Oppenheim and M. S. Taqqu (2003), Theory and Applications of Long-Range Dependence. Birkhaüser, Boston.

    MATH  Google Scholar 

  31. M. Dozzi (2002), Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca,2001), pp. 127–169, Lecture Notes in Math. 1802, Springer, Berlin.

    Google Scholar 

  32. T. Dunker (2000), Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13, 357–382.

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Dzhaparidze and H. van Zanten (2005), Optimality of an explicit series of the fractional Browinan sheet. Statist. Probab. Lett. 71, 295–301.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. Ehm (1981), Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw Gebiete 56, 195–228.

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Eisenbaum and D. Khoshnevisan (2002), On the most visited sites of symmetric Markov processes. Stoch. Process. Appl. 101, 241–256.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. J. Falconer (1990), Fractal Geometry — Mathematical Foundations And Applications. John Wiley & Sons Ltd., Chichester.

    MATH  Google Scholar 

  37. K. J. Falconer and J. D. Howroyd (1997), Packing dimensions for projections and dimension profiles. Math. Proc. Camb. Philo. Soc. 121, 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Funaki (1983), Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129–193.

    MATH  MathSciNet  Google Scholar 

  39. T. Funaki, M. Kikuchi and J. Potthoff (2006), Direction-dependent modulus of continuity for random fields. Preprint.

    Google Scholar 

  40. A. M. Garsia, E. Rodemich and H. Jr. Rumsey (1970), A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Geman and J. Horowitz (1980), Occupation densities. Ann. Probab. 8, 1–67.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Hawkes (1978), Measures of Hausdorff type and stable processes. Mathe-matika 25, 202–210.

    MathSciNet  Google Scholar 

  43. E. Herbin (2006), From N parameter fractional Brownian motions to N parameter multifractional Brownian motions. Rocky Mount. J. Math. 36, 1249–1284.

    Article  MATH  MathSciNet  Google Scholar 

  44. X. Hu and S. J. Taylor (1994), Fractal properties of products and projections of measures in Rd. Math. Proc. Camb. Philos. Soc., 115, 527–544.

    MATH  MathSciNet  Google Scholar 

  45. Y. Hu, B. ϕksendal and T. Zhang (2000), Stochastic partial differential equations driven by multiparameter fractional white noise. Stochastic Processes, Physics and Geometry: new interplays, II (Leipzig, 1999), 327–337, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  46. J.-P. Kahane (1985), Some Random Series of Functions. 2nd edition, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  47. A. Kamont (1996), On the fractional anisotropic Wiener field. Probab. Math. Statist. 16, 85–98.

    MATH  MathSciNet  Google Scholar 

  48. R. Kaufman (1972), Measures of Hausdorff-type, and Brownian motion. Mathematika 19, 115–119.

    MATH  MathSciNet  Google Scholar 

  49. D. Khoshnevisan (2002), Multiparameter Processes: An Introduction to Random Fields. Springer, New York.

    MATH  Google Scholar 

  50. D. Khoshnevisan and Z. Shi (1999), Brownian sheet and capacity. Ann. Probab. 27, 1135–1159.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Khoshnevisan, D. Wu and Y. Xiao (2006), Sectorial local nondeterminism and the geometry of the Brownian sheet. El ectron. J. P robab. 11, 817–843.

    MathSciNet  Google Scholar 

  52. D. Khoshnevisan and Y. Xiao (2002), Level sets of additive Lévy processes. Ann. Probab. 30, 62–100.

    Article  MATH  MathSciNet  Google Scholar 

  53. D. Khoshnevisan and Y. Xiao (2003), Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc. 131, 2611–2616.

    Article  MATH  MathSciNet  Google Scholar 

  54. D. Khoshnevisan and Y. Xiao (2005), Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33, 841–878.

    Article  MATH  MathSciNet  Google Scholar 

  55. D. Khoshnevisan and Y. Xiao (2007a), Images of the Brownian sheet. Trans. Amer. Math. Soc. 359, 3125–3151.

    Article  MATH  MathSciNet  Google Scholar 

  56. D. Khoshnevisan and Y. Xiao (2007b), Harmonic analysis of additive Lévy processes. Submitted.

    Google Scholar 

  57. D. Khoshnevisan, Y. Xiao and Y. Zhong (2003), Measuring the range of an additive Lévy process. Ann. Probab. 31, 1097–1141.

    Article  MATH  MathSciNet  Google Scholar 

  58. N. Kôno (1975), Asymptotoc behavior of sample functions of Gaussian random fields. J. Math. Kyoto Univ. 15, 671–707.

    MATH  MathSciNet  Google Scholar 

  59. T. Kühn and W. Linde (2002), Optimal series representation of fractional Brownian sheet. Bernoulli 8, 669–696.

    MATH  MathSciNet  Google Scholar 

  60. S. Kwapień and J. Rosiński (2004), Sample Hölder continuity of stochastic processes and majorizing measures. In: Seminar on Stochastic Analysis, Random Fields and Applications IV, pp. 155–163, Progr. Probab., 58, Birkhäuser, Basel.

    Google Scholar 

  61. M. Ledoux (1996), Isoperimetry and Gaussian analysis. Lecture Notes in Math. 1648, 165–294, Springer-Verlag, Berlin.

    Google Scholar 

  62. W. V. Li and Q.-M. Shao (2001), Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statistics, 19, (C. R. Rao and D. Shanbhag, editors), pp. 533– 597, North-Holland.

    Google Scholar 

  63. M. A. Lifshits (1999), Asymptotic behavior of small ball probabilities. In: Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference (1998). Vilnius, VSP/TEV, pp. 453–468.

    Google Scholar 

  64. W. Linde (2007), Non-determinism of linear operators and lower entropy estimates. Preprint.

    Google Scholar 

  65. D. J. Mason and Y. Xiao (2001), Sample path properties of operator self-similar Gaussian random fields. Teor. Veroyatnost. i Primenen. 46, 94–116.

    MathSciNet  Google Scholar 

  66. D. M. Mason and Z. Shi (2001), Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14, 213–239.

    Article  MATH  MathSciNet  Google Scholar 

  67. P. Mattila (1995), Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  68. M. M. Meerschaert, W. Wang and Y. Xiao (2007), Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields. Preprint.

    Google Scholar 

  69. M. M. Meerschaert, D. Wu and Y. Xiao (2008), Self-intersection local times of fractional Brownian sheets. In Preparation.

    Google Scholar 

  70. D. Monrad and L. D. Pitt (1987), Local nondeterminism and Hausdorff dimension. Progress in Probability and Statistics. Seminar on Stochastic Processes 1986, (E, Cinlar, K. L. Chung, R. K. Getoor, Editors), pp. 163–189, Birkhäuser, Boston.

    Google Scholar 

  71. D. Monrad and H. Rootzén (1995), Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Thory Relat. Fields 101, 173–192.

    Article  MATH  Google Scholar 

  72. T. S. Mountford (1989), Uniform dimension results for the Brownian sheet. Ann. Probab. 17, 1454–1462.

    Article  MATH  MathSciNet  Google Scholar 

  73. C. Mueller and R. Tribe (2002), Hitting probabilities of a random string. Electron. J. Probab. 7, Paper No. 10, 1–29.

    MathSciNet  Google Scholar 

  74. D. Nualart (2006), Stochastic heat equation driven by fractional noise. Preprint.

    Google Scholar 

  75. B. Ôksendal and T. Zhang (2000), Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stoch. Stoch. Rep. 71, 141–163.

    Google Scholar 

  76. S. Orey and W. E. Pruitt (1973), Sample functions of the N-parameter Wiener process. Ann. Probab. 1, 138–163.

    Article  MATH  MathSciNet  Google Scholar 

  77. L. D. Pitt (1978), Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330.

    Article  MATH  MathSciNet  Google Scholar 

  78. L. D. Pitt and R. S. Robeva (2003), On the sharp Markov property for Gaussian random fields and spectral synthesis in spaces of Bessel potentials. Ann. Probab. 31, 1338–1376.

    Article  MATH  MathSciNet  Google Scholar 

  79. R. S. Robeva and L. D. Pitt (2004), On the equality of sharp and germ σ-fields for Gaussian processes and fields. Pliska Stud. Math. Bulgar. 16, 183–205.

    MathSciNet  Google Scholar 

  80. C. A. Rogers and S. J. Taylor (1961), Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  81. J. Rosen (1984), Self-intersections of random fields. Ann. Probab. 12, 108–119.

    Article  MATH  MathSciNet  Google Scholar 

  82. G. Samorodnitsky and M. S. Taqqu (1994), Stable non-Gaussian Random Processes: Stochastic models with infinite variance. Chapman & Hall, New Yo r k.

    MATH  Google Scholar 

  83. N.-R. Shieh and Y. Xiao (2006), Images of Gaussian random fields: Salem sets and interior points. Studia Math. 176, 37–60.

    MATH  MathSciNet  Google Scholar 

  84. M. Talagrand (1993), New Gaussian estimates for enlarged balls. Geometric Fu n c t. An a l. 3, 502–526.

    Article  MATH  MathSciNet  Google Scholar 

  85. M. Talagrand (1995), Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23, 767–775.

    Article  MATH  MathSciNet  Google Scholar 

  86. M. Talagrand (1998), Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112, 545–563.

    Article  MATH  MathSciNet  Google Scholar 

  87. M. Talagrand and Y. Xiao (1996), Fractional Brownian motion and packing dimension. J. Theoret. Probab. 9, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  88. S. J. Taylor (1986), The measure theory of random fractals. Math. Proc. Camb. Philos. Soc. 100, 383–406.

    Article  MATH  Google Scholar 

  89. S. J. Taylor and C. Tricot (1985), Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288, 679–699.

    Article  MATH  MathSciNet  Google Scholar 

  90. S. J. Taylor and A. A. Watson (1985), A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Philos. Soc. 97, 325–344.

    MATH  MathSciNet  Google Scholar 

  91. F. Testard (1986), Polarité, points multiples et géométrie de certain proces-sus gaussiens. Publ. du Laboratoire de Statistique et Probabilités de l'U.P.S. Toulouse, 01–86.

    Google Scholar 

  92. C. Tricot (1982), Two definitions of fractional dimension. Math. Proc. Camb.Philos. Soc. 91, 57–74.

    MATH  MathSciNet  Google Scholar 

  93. C. A. Tudor and Y. Xiao (2007), Sample path properties of bifractional Brownian motion. Bernoulli 14, 1023–1052.

    Article  MathSciNet  Google Scholar 

  94. J. B. Walsh (1986), An introduction to stochastic partial differential equations.École d'été de probabilités de Saint-Flour, XIV—1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin.

    Google Scholar 

  95. W. Wang (2007), Almost-sure path properties of fractional Brownian sheet.Ann. Inst. H. Poincaré Probab. Statist. 43, 619–631.

    Article  MATH  Google Scholar 

  96. D. Wu and Y. Xiao (2006), Fractal properties of random string processes. IMS Lecture Notes-Monograph Series—High Dimensional Probability. 51, 128–147.

    Article  MathSciNet  Google Scholar 

  97. D. Wu and Y. Xiao (2007), Geometric properties of fractional Brownian sheets.J. Fourier Anal. Appl. 13, 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  98. Y. Xiao (1995), Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23, 273–291.

    Article  MATH  MathSciNet  Google Scholar 

  99. Y. Xiao (1996a), Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math. 33, 895–913.

    MATH  Google Scholar 

  100. Y. Xiao (1996b), Packing measure of the sample paths of fractional Brownian motion. Trans. Amer. Math. Soc. 348, 3193–3213.

    Article  MATH  Google Scholar 

  101. Y. Xiao (1997a), Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 122, 565–576.

    Article  MATH  Google Scholar 

  102. Y. Xiao (1997b), Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157.

    Article  MATH  Google Scholar 

  103. Y. Xiao (1997c), Packing dimension of the image of fractional Brownian motion. Statist. Probab. Lett. 33, 379–387.

    Article  MATH  Google Scholar 

  104. Y. Xiao (1999), Hitting probabilities and polar sets for fractional Brownian motion. Stoch. Stoch. Rep. 66, 121–151.

    MATH  Google Scholar 

  105. Y. Xiao (2003), The packing measure of the trajectories of multiparameter fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 135, 349–375.

    Article  MATH  Google Scholar 

  106. Y. Xiao (2004), Random fractals and Markov processes. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, (M. L. Lapidus and M. van Frankenhuijsen, editors), pp. 261–338, American Mathematical Society.

    Google Scholar 

  107. Y. Xiao (2006), Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV, 157–193.

    Google Scholar 

  108. Y. Xiao (2007), Strong local nondeterminism and sample path properties of Gaussian random fields. In: Asymptotic Theory in Probability and Statistics with Applications (T.-L. Lai, Q.-M. Shao and L. Qian, eds), pp. 136–176, Higher Education Press, Beijing.

    Google Scholar 

  109. Y. Xiao (2008), Spectral conditions for strong local nondeterminism of Gaussian random fields. In Preparation.

    Google Scholar 

  110. Y. Xiao and T. Zhang (2002), Local times of fractional Brownian sheets. Probab. Theory Relat. Fields 124, 204–226.

    Article  MATH  MathSciNet  Google Scholar 

  111. A. M. Yaglom (1957), Some classes of random fields in n-dimensional space, related to stationary random processes. Th. Probab. Appl. 2, 273–320.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to Yimin Xiao .

Editor information

Davar Khoshnevisan Firas Rassoul-Agha

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiao, Y. (2009). Sample Path Properties of Anisotropic Gaussian Random Fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol 1962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85994-9_5

Download citation

Publish with us

Policies and ethics