Skip to main content

Theory of adaptive finite element methods: An introduction

  • Conference paper
  • First Online:
Multiscale, Nonlinear and Adaptive Approximation

Abstract

This is a survey on the theory of adaptive finite element methods (AFEM), which are fundamental in modern computational science and engineering. We present a self-contained and up-to-date discussion of AFEM for linear second order elliptic partial differential equations (PDEs) and dimension d>1, with emphasis on the differences and advantages of AFEM over standard FEM. The material is organized in chapters with problems that extend and complement the theory. We start with the functional framework, inf-sup theory, and Petrov-Galerkin method, which are the basis of FEM. We next address four topics of essence in the theory of AFEM that cannot be found in one single article: mesh refinement by bisection, piecewise polynomial approximation in graded meshes, a posteriori error analysis, and convergence and optimal decay rates of AFEM. The first topic is of geometric and combinatorial nature, and describes bisection as a rather simple and efficient technique to create conforming graded meshes with optimal complexity. The second topic explores the potentials of FEM to compensate singular behavior with local resolution and so reach optimal error decay. This theory, although insightful, is insufficient to deal with PDEs since it relies on knowing the exact solution. The third topic provides the missing link, namely a posteriori error estimators, which hinge exclusively on accessible data: we restrict ourselves to the simplest residual-type estimators and present a complete discussion of upper and lower bounds, along with the concept of oscillation and its critical role. The fourth topic refers to the convergence of adaptive loops and its comparison with quasi-uniform refinement. We first show, under rather modest assumptions on the problem class and AFEM, convergence in the natural norm associated to the variational formulation. We next restrict the problem class to coercive symmetric bilinear forms, and show that AFEM is a contraction for a suitable error notion involving the induced energy norm. This property is then instrumental to prove optimal cardinality of AFEM for a class of singular functions, for which the standard FEM is suboptimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Wiley (2000)

    Google Scholar 

  2. Arnold, D.N., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atalay, F.B., Mount, D.M.: The cost of compatible refinement of simplex decomposition trees. In: Proc. International Meshing Roundtable 2006 (IMR 2006), pp. 57–69 (2006). Birmingham, AL

    Google Scholar 

  4. Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33(4), 447–471 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York (2001)

    Google Scholar 

  7. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. with the collaboration of G. Fix and R.B. Kellogg. Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, Sympos. Univ. Maryland, Baltimore 1972, 1-359 (1972). (1972)

    Google Scholar 

  10. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3, 181–191 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Beck, R., Hiptmair, R., Hoppe, R.H., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. Math. Model. Numer. Anal. 34(1), 159–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28(4), 391–416 (2002). Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday

    MATH  MathSciNet  Google Scholar 

  15. Braess, D.: Finite Elements. Theory, fast solvers, and applications in solid mechanics, 2nd edition. Cambridge University Press (2001)

    Google Scholar 

  16. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer Texts in Applied Mathematics 15 (2008)

    Google Scholar 

  17. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, T 129–151 (1974)

    MathSciNet  Google Scholar 

  18. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15 (1991)

    Google Scholar 

  19. Carroll, R., Duff, G., Friberg, J., Gobert, J., Grisvard, P., Nečas, J., Seeley, R.: Equations aux dérivées partielles. No. 19 in Seminaire de mathematiques superieures. Les Presses de l’Université de Montréal (1966)

    Google Scholar 

  20. Carstensen, C., Funken, S.A.: Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21(4), 1465–1484 (electronic) (1999/00)

    Article  MathSciNet  Google Scholar 

  21. Cascón, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. Preprint 009/2007, Universität Augsburg (2007)

    Google Scholar 

  22. Cea, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier 14(2), 345–444 (1964)

    MATH  MathSciNet  Google Scholar 

  23. Chen, L., Nochetto, R.H., Xu, J.: Adaptive multilevel methods on graded bisection grids. to appear (2009)

    Google Scholar 

  24. Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1042 (2006)

    Article  MathSciNet  Google Scholar 

  25. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, 40, SIAM (2002)

    Google Scholar 

  26. Clément, P.: Approximation by finite element functions using local regularization. R.A.I.R.O. 9, 77–84 (1975)

    Google Scholar 

  27. Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. Partial Differ. Equations 22(1-2), 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. DeVore, R.A.: Nonlinear approximation. In: A. Iserles (ed.) Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press (1998)

    Google Scholar 

  29. DeVore, R.A., Lorentz, G.G. Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  30. DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305(1), 397–414 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Diening, L., Kreuzer, C.: Convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  34. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. 19. Providence, AMS (1998)

    Google Scholar 

  36. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. 1: Linearized steady problems. Springer Tracts in Natural Philosophy, 38 (1994)

    Google Scholar 

  37. Gaspoz, F., Morin, P.: Approximation classes for adaptive higher order finite element approximation. (in preparation) (2009)

    Google Scholar 

  38. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics, Springer (2001)

    Google Scholar 

  39. Grisvard, P.: Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston, MA (1985)

    MATH  Google Scholar 

  40. Hintermüller, M., Hoppe, R.H., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM, Control Optim. Calc. Var. 14(3), 540–560 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jarausch, H.: On an adaptive grid refining technique for finite element approximations. SIAM J. Sci. Stat. Comput. 7, 1105–1120 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kato, T.: Estimation of iterated matrices, with application to the von Neumann condition. Numer. Math. 2, 22–29 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Applicable Anal. 4, 101–129 (1974/75). Collection of articles dedicated to Nikolai Ivanovich Muskhelishvili

    Article  MATH  MathSciNet  Google Scholar 

  44. Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lax, P., Milgram, A.: Parabolic equations. Ann. Math. Stud. 33, 167–190 (1954)

    MATH  MathSciNet  Google Scholar 

  46. Liu, A., Joe, B.: Quality local refinement of tetrahedral meshes based on bisection. SIAM J. Sci. Comput. 16, 1269–1291 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  47. Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43(5), 1803–1827 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mitchell, W.F.: Unified multilevel adaptive finite element methods for elliptic problems. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana (1988)

    Google Scholar 

  50. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15, 326–347 (1989)

    Article  MATH  Google Scholar 

  51. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press. xiv, 450 p. (2003)

    Google Scholar 

  52. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Review 44, 631–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  54. Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on stars: A posteriori error estimators, convergence, and performance. Math. Comp. 72, 1067–1097 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. 18 (2008) 18, 707–737 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Necas, J.: Sur une méthode pour resoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 16, 305–326 (1962)

    MATH  MathSciNet  Google Scholar 

  57. Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comp. 57(195), 73–108 (1991), S1–S11

    Article  MathSciNet  Google Scholar 

  58. Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal. Anwendungen 9(1), 43–64 (1990)

    MATH  MathSciNet  Google Scholar 

  59. Otto, F.: On the Babuška–Brezzi condition for the Taylor–Hood element. Diploma thesis Universität Bonn (1990). In German

    Google Scholar 

  60. Payne, L.E., Weinberger, H.F.: An optimal Poincaré-inequality for convex domains. Archive Rat. Mech. Anal. 5, 286–292 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  61. Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21(3), 604–613 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  62. Sacchi, R., Veeser, A.: Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. Sci. 16(3), 319–346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. The finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering 42, Springer (2005)

    Google Scholar 

  64. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comp. 77(262), 633–649 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation 54(190), 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  66. Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. dissertation, Purdue Univ., West Lafayette, Ind., 1972

    Google Scholar 

  67. Siebert, K.G.: A convergence proof for adaptive finite elements without lower bound (2009). Preprint Universität Duisburg-Essen and Universität Freiburg No. 1/2009

    Google Scholar 

  68. Siebert, K.G., Veeser, A.: A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim. 18(1), 260–289 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  71. Storoženko, È.A., Oswald, P.: Jackson’s theorem in the spaces L p(R k), 0<p<1. Sibirsk. Mat. Ž. 19(4), 888–901, 956 (1978)

    MathSciNet  Google Scholar 

  72. Traxler, C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  73. Veeser, A.: Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92(4), 743–770 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  74. Veeser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. (to appear)

    Google Scholar 

  75. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  76. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Adv. Numer. Math. John Wiley, Chichester, UK (1996)

    MATH  Google Scholar 

  77. Wu, H., Chen, Z.: Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49(10), 1405–1429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  78. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H(grad), H(curl) and H(div) systems on graded and unstructured grids, R.A. DeVore and A. Kunoth eds., Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer 2009.

    Google Scholar 

  79. Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. Nochetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nochetto, R.H., Siebert, K.G., Veeser, A. (2009). Theory of adaptive finite element methods: An introduction. In: DeVore, R., Kunoth, A. (eds) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03413-8_12

Download citation

Publish with us

Policies and ethics