Skip to main content

Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 78))

Abstract

In many fields of applications such as reactive transport or ocean-atmosphere coupling, models with very different spatial and time scales have to be coupled. Optimized Schwarz Waveform Relaxation methods (OSWR), applied to linear advection-reaction-diffusion problems in [1, 8], provide efficient solvers for this purpose. They have two main advantages: first, they are global in time and thus permit non conforming space-time discretization in different subdomains, and second, few iterations are needed to compute an accurate solution, due to optimized transmission conditions. It has been proposed in [4] to use a discontinuous Galerkin method in time as a subdomain solver. Rigorous analysis can be made for any degree of accuracy and local time-stepping, and finally time steps can be adaptively controlled by a posteriori error analysis, see [6, 7, 10].

* partially supported by french ANR (COMMA) and GdR MoMaS.

* partially supported by NSF Grant DMS-0504720

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. Bennequin, M.J. Gander, and L. Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput., 78:185–223, 2009.

    Article  MathSciNet  Google Scholar 

  2. M.J. Gander, L. Halpern, and F. Nataf. Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal., 41(5):1643–1681, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.J. Gander, C. Japhet, Y. Maday, and F. Nataf. A new cement to glue nonconforming grids with Robin interface conditions : The finite element case. In R. Kornhuber, R.H.W. Hoppe, J. Périaux, O. Pironneau, O.B. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes in Computational Science and Engineering, pp. 259–266. Springer, 2005.

    Google Scholar 

  4. L. Halpern and C. Japhet. Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation for heterogeneous problems. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pp. 211–219. Springer, 2008.

    Google Scholar 

  5. L. Halpern, C. Japhet, and J. Szeftel. Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation for heterogeneous problems. In preparation, 2009.

    Google Scholar 

  6. C. Johnson, K. Eriksson, and V. Thomée. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér., 19, 1985.

    Google Scholar 

  7. C. Makridakis and R. Nochetto. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104, 2006.

    Google Scholar 

  8. V. Martin. An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl. Numer. Math., 52:401–428, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Szeftel. Calcul pseudo-différentiel et para-différentiel pour l’étude des conditions aux limites absorbantes et des propriétés qualitatives des EDP non linéaires. PhD thesis, Université Paris 13, Paris, 2004.

    Google Scholar 

  10. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, Heidelberg, New York, NY 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Halpern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halpern, L., Japhet*, C., Szeftel*, J. (2011). Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_13

Download citation

Publish with us

Policies and ethics