Skip to main content

An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 21))

Abstract

To Endre Szemerédi on the occasion of his 70th birthday Szemerédi’s regularity lemma can be viewed as a rough structure theorem for arbitrary dense graphs, decomposing such graphs into a structured piece, a small error, and a uniform piece. We establish an arithmetic regularity lemma that similarly decomposes bounded functions f: [N] →ℂ, into a (well-equidistributed, virtual) s-step nilsequence, an error which is small in L2 and a further error which is minuscule in the Gowers Us+1-norm, where s ≥ 1 is a parameter. We then establish a complementary arithmetic counting lemma that counts arithmetic patterns in the nilsequence component of f.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, E. Fischer, M. Krivelevich and B. Szegedy, Efficient testing of large graphs, Proc. of 40th FOCS, New York, NY, IEEE (1999), 656–666. Also: Combinatorica, 20 (2000), 451-476.

    Google Scholar 

  2. T. Austin, Deducing the multidimensional Szemerédi Theorem from an infinitary removal lemma, preprint, arXiv:0808.2267.

    Google Scholar 

  3. T. Austin, Deducing the Density Hales-Jewett Theorem from an infinitary removal lemma, preprint, arXiv:0903.1633.

    Google Scholar 

  4. V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, with an appendix by Imre Ruzsa, Invent Math., 160 (2005), no. 2, 261–303.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Bergelson, A. Leibman and E. Lesigne, Weyl complexity of a system of polynomials and constructions in combinatorial number theory, J. D’Analyse Mathématique, 103 (2007), 47–92.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Bergelson, A. Leibman and E. Lesigne, Intersective polynomials and the polynomial Szemeredi theorem, Adv. Math., 219 (2008), no. 1, 369–388.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bourgain, A Szemerédi type theorem for sets of positive density in ℝk, Israel J. Math., 54 (1986), no. 3, 307–316.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bourgain, On triples in arithmetic progression, GAFA, 9 (1999), 968–984.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Struct. Alg., 2 (1991), 241–252.

    Article  MATH  Google Scholar 

  10. H. Furstenberg, Recurrence in Ergodic theory and Combinatorial Number Theory, Princeton University Press, Princeton NJ 1981.

    MATH  Google Scholar 

  11. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. Analyse Math., 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Furstenberg, From the Erdős-Turán conjecture to ergodic theory—the contribution of combinatorial number theory to dynamics, in: Paul Erdős and his mathematics, I (Budapest, 1999), 261–277, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.

    Google Scholar 

  13. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. d’Analyse Math., 57 (1991), 64–119.

    MATH  MathSciNet  Google Scholar 

  14. H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.), 7 (1982), no. 3, 527–552.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica, 19 (1999), no. 2, 175–220.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, GAFA, 7 (1997), 322–337.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. T. Gowers, A new proof of Szemerédi’s theorem for progressions of length four, GAFA, 8 (1998), no. 3, 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. T. Gowers, A new proof of Szemerédi’s theorem, GAFA, 11 (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. (2), 166 (2007), no. 3, 897–946.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. T. Gowers, Quasirandomness, counting, and regularity for 3-uniform hypergraphs, Combin. Probab. Comput, 15 (2006), no. 1-2, 143–184.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. T. Gowers, Decompositions, approximate structure, transference, and the HahnBanach theorem, preprint.

    Google Scholar 

  22. W. T. Gowers and J. Wolf, The true complexity of a system of linear equations, to appear in Mathematika, arXiv: 1002.2209.

    Google Scholar 

  23. W. T. Gowers and J. Wolf, Linear forms and quadratic uniformity for functions on N , to appear in J. d’Analyse, arXiv: 1002.2210.

    Google Scholar 

  24. W. T. Gowers and J. Wolf, Linear forms and higher-degree uniformity for functions on Fp n, preprint, arXiv: 1002.2208.

    Google Scholar 

  25. B. J. Green, A Szemerédi-type regularity lemma in abelian groups, GAFA, 15 (2005), no. 2, 340–376.

    Article  MATH  Google Scholar 

  26. B. J. Green, Montréal lecture notes on quadratic Fourier analysis, Additive Combinatorics (Montreal 2006, ed. Granville et al.), CRM Proceedings vol. 43, 69–102, AMS 2007.

    Google Scholar 

  27. B. J. Green and T. C. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167 (2008), 481–547.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. J. Green and T. C. Tao, An inverse theorem for the Gowers U3(G)-norm, Proc. Edin. Math. Soc., 51 (2008), 73–153.

    Article  MATH  MathSciNet  Google Scholar 

  29. B. J. Green and T. C. Tao, New bounds for Szemerédi’s Theorem, I: Progressions of length 4 in finite field geometries, Proc. Lond. Math. Soc., 98 (2009), 365–392.

    Article  MATH  MathSciNet  Google Scholar 

  30. B. J. Green and T. C. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, to appear in Ann. Math., arXiv:0709.3562.

    Google Scholar 

  31. B. J. Green and T. C. Tao, Linear equations in primes, to appear in Ann. Math., arXiv:math/0606088.

    Google Scholar 

  32. B. J. Green and T. C. Tao, The Mobius function is strongly orthogonal to nilsequences, to appear in Ann. Math., arXiv:0807.1736.

    Google Scholar 

  33. B. J. Green, T. C. Tao and T. Ziegler, An inverse theorem for the Gowers U4-norm, to appear in Glasgow J. Math., arXiv:0911.5681.

    Google Scholar 

  34. B. J. Green, T. C. Tao and T. Ziegler, An inverse theorem for the Gowers Us+1 [N]-norm (announcement), arXiv: 1006.0205.

    Google Scholar 

  35. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), no. 1, 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, in: Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 295–352, Bolyai Soc. Math. Stud., 2, János Bolyai Math. Soc, Budapest, 1996.

    Google Scholar 

  37. A. Leibman, Polynomial sequences in groups, Journal of Algebra, 201 (1998), 189–206.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Leibman, Polynomial mappings of groups, Israel J. Math., 129 (2002), 29–60.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Leibman, Pointwise convergence of ergodic averages of polynomial sequences of translations on a nilmanifold, Ergodic Theory and Dynamical Systems, 25 (2005), no. 1, 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of −d by translations on a nilmanifold, Ergodic Theory and Dynamical Systems, 25 (2005), no. 1, 215–225.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Leibman, Orbit of the diagonal of the power of a nilmanifold, Transactions of AMS, 362 (2010), 1619–1658.

    Article  MATH  MathSciNet  Google Scholar 

  42. L. Lovász and B. Szegedy, Szemerédi’s Lemma for the analyst, Geom. Func. Anal, 17 (2007), 252–270.

    Article  MATH  Google Scholar 

  43. B. Nagle, V. Rödl and M. Schacht, Note on the 3-graph counting lemma, Discrete Mathematics, 308 (19), 4501–4517.

    Google Scholar 

  44. B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures and Algorithms, 28(2), 113–179.

    Google Scholar 

  45. D. H. J. Polymath, A new proof of the density Hales-Jewett theorem, to appear in this volume.

    Google Scholar 

  46. O. Reingold, L. Trevisan, M. Tulsiani and S. Vadhan, Dense Subsets of Pseudorandom Sets, in: Proc. of 49th IEEE FOCS, 2008 ECCC TR08-45.

    Google Scholar 

  47. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar., 20 (1969), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  48. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27 (1975), 299–345.

    Google Scholar 

  49. E. Szemerédi, Regular partitions of graphs, in “Problèmes Combinatoires et Theorie des Graphes, Proc. Colloque Inter. CNRS, ” (Bermond, Fournier, Las Vergnas, Sotteau, eds.), CNRS Paris, 1978, 399–401.

    Google Scholar 

  50. T. C. Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electron. J. Combin., 13 (2006). 1 No. 99, 1–49.

    Google Scholar 

  51. T. C. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, 2006 ICM proceedings, Vol. I., 581–608.

    Google Scholar 

  52. T. C. Tao, A variant of the hypergraph removal lemma, J. Combin. Thy. A, 113 (2006), 1257–1280.

    Article  MATH  Google Scholar 

  53. T. C. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete Math., 1 (2006), 8–28.

    MATH  MathSciNet  Google Scholar 

  54. T. C. Tao, Structure and randomness in combinatorics, Proceedings of the 48th annual symposium on Foundations of Computer Science (FOCS) 2007, 3–18.

    Google Scholar 

  55. T. C. Tao and V. H. Vu, Additive Combinatorics, Cambridge University Press, 2006.

    Google Scholar 

  56. H. Towsner, A Model Theoretic Proof of Szemerédi’s Theorem, preprint, arXiv: 1002.4456.

    Google Scholar 

  57. P. Varnavides, On certain sets of positive density, J. London Math. Soc, 39 (1959), 358–360.

    Article  MathSciNet  Google Scholar 

  58. T. Ziegler, Universal Characteristic Factors and Furstenberg Averages, J. Amer. Math. Soc., 20 (2007), 53–97.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Green, B., Tao, T. (2010). An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications. In: Bárány, I., Solymosi, J., Sági, G. (eds) An Irregular Mind. Bolyai Society Mathematical Studies, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14444-8_7

Download citation

Publish with us

Policies and ethics