Skip to main content

Ternary Kloosterman Sums Modulo 18 Using Stickelberger’s Theorem

  • Conference paper
Sequences and Their Applications – SETA 2010 (SETA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6338))

Included in the following conference series:

Abstract

A result due to Helleseth and Zinoviev characterises binary Kloosterman sums modulo 8. We give a similar result for ternary Kloosterman sums modulo 9. This leads to a complete characterisation of values that ternary Kloosterman sums assume modulo 18. The proof uses Stickelberger’s theorem and Fourier analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charpin, P., Helleseth, T., Zinoviev, V.: The divisibility modulo 24 of Kloosterman sums on GF(2m), m odd. Journal of Combinatorial Theory 114, 332–338 (2007)

    MathSciNet  Google Scholar 

  2. Dillon, J.F.: Elementary Hadamard Difference Sets. PhD thesis, University of Maryland (1974)

    Google Scholar 

  3. Garaschuk, K., Lisoněk, P.: On ternary Kloosterman sums modulo 12. Finite Fields Appl. 14(4), 1083–1090 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Garaschuk, K., Lisoněk, P.: On binary Kloosterman sums divisible by 3. Designs, Codes and Cryptography 49, 347–357 (2008)

    Article  MATH  Google Scholar 

  5. Gross, B.H., Koblitz, N.: Gauss sums and the p-adic Γ-function. Ann. of Math. (2) 109(3), 569–581 (1979)

    Article  MathSciNet  Google Scholar 

  6. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52(5), 2018–2032 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Helleseth, T., Zinoviev, V.: On ℤ4-linear Goethals codes and Kloosterman sums. Designs, Codes and Cryptography 17, 269–288 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Katz, N., Livné, R.: Sommes de Kloosterman et courbes elliptiques universelles caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I. Math. 309(11), 723–726 (1989)

    MATH  Google Scholar 

  9. Katz, N.M.: Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies, vol. 116. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  10. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory 36(3), 686–692 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Langevin, P., Leander, G.: Monomial bent functions and Stickelberger’s theorem. Finite Fields and Their Applications 14, 727–742 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  13. Lisoněk, P.: On the connection between Kloosterman sums and elliptic curves. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 182–187. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lisoněk, P., Moisio, M.: On zeros of Kloosterman sums (to appear 2009)

    Google Scholar 

  15. Moisio, M.: The divisibility modulo 24 of Kloosterman sums on GF(2m), m even. Finite Fields and Their Applications 15, 174–184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robert, A.: The Gross-Koblitz formula revisited. Rendiconti del Seminario Matematico della Università di Padova 105, 157–170 (2001)

    Google Scholar 

  17. van der Geer, G., van der Vlugt, M.: Kloosterman sums and the p-torsion of certain Jacobians. Math. Ann. 290(3), 549–563 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wan, D.Q.: Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl. 1(2), 189–203 (1995); Special issue dedicated to Leonard Carlitz

    Article  MATH  MathSciNet  Google Scholar 

  19. Washington, L.C.: Introduction to Cyclotomic Fields. Springer, Heidelberg (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Göloğlu, F., McGuire, G., Moloney, R. (2010). Ternary Kloosterman Sums Modulo 18 Using Stickelberger’s Theorem. In: Carlet, C., Pott, A. (eds) Sequences and Their Applications – SETA 2010. SETA 2010. Lecture Notes in Computer Science, vol 6338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15874-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15874-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15873-5

  • Online ISBN: 978-3-642-15874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics