Skip to main content

Multidimensional Generalized Riemannian Spaces

  • Chapter
Geometry IV

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 70))

Abstract

A Riemannian space is usually understood as a space such that in small domains of it Euclidean geometry holds approximately, to within infinitesimals of higher order in comparison with the dimensions of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov, A.D. [ 1948 ]: Intrinsic Geometry of Convex Surfaces. Gostekhizdat, Moscow-Leningrad, Zb1.38,352. German transl.: Akademie Verlag, Berlin 1955, Zb1. 65, 151

    Google Scholar 

  • Aleksandrov, A.D. [ 1951 ]: A theorem on triangles in a metric space and some applications of it. Tr. Mat. Inst. Steklova 38, 5–23 [Russian], Zb1. 49, 395

    Google Scholar 

  • Aleksandrov, A.D. [ 1957a ]: Ruled surfaces in metric spaces. Vestn. Leningr. Univ. 12, No. 1, 5–26 [Russian], Zb1. 96, 166

    Google Scholar 

  • Aleksandrov, A.D. [ 1957b ]: Über eine Verallgemeinerung der Riemannschen Geometrie. Schr. Forschungsinst. Math. 1, 33–84, Zb1. 77, 357

    Google Scholar 

  • Aleksandrov, A.D. and Berestovskij, V.N. [ 1984 ]: Generalized Riemannian space. Mathematical Encyclopaedia, vol. 4, 1022–1026. English transi.: Klúwer Acad. Publ., Dordrecht.

    Google Scholar 

  • Aleksandrov, A.D., Berestovskij, V.N. and Nikolaev, I.G. [ 1986 ]: Generalized Riemannian spaces. Usp. Mat. Nauk 41, No. 3, 3–44. English transi.: Russ. Math. Surv. 41, No. 3, 1–54 (1986), Zb1. 625. 53059

    Google Scholar 

  • Aleksandrov, A.D. and Zalgaller, V.A. [ 1962 ]: Two-dimensional manifolds of bounded curvature. Tr. Mat. Inst. Steklova 63. English transi.: Intrinsic geometry of surfaces. Transi. Math. Monographs 15, Am. Math. Soc. (1967), Zb1. 122, 170

    Google Scholar 

  • Berestovskij V.N. [ 1975 ]: Introduction of a Riemannian structure in certain metric spaces. Sib. Mat. Zh. 16, 651–662. English transi.: Sib. Math. J. 16, 499–507 (1976), Zb1. 325. 53059

    Google Scholar 

  • Berestovskij, V.N. [ 1981 ]: Spaces with bounded curvature. Dokl. Akad. Nauk SSSR 258, 269–271. English transi.: Soy. Math., Dokl. 23, 491–493 (1981), Zb1. 511. 53074

    Google Scholar 

  • Berestovskij, V.N. [ 1986 ]: Spaces with bounded curvature and distance geometry. Sib. Mat. Zh. 27, No. 1, 11–25. English transi.: Sib. Math. J. 27, 8–19 (1986), Zb1. 596. 53029

    Google Scholar 

  • Berger, M. [ 1983 ]: Sur les variétés Riemanniennes pincées juste au dessous de 1/4. Ann. Inst. Fourier 33, 135–150, Zb1. 497. 53044

    Google Scholar 

  • Bers, L., John, F. and Schechter, M. [ 1964 ]: Partial Differential Equations. Interscience, New York, Zb1.128,93 and Zb1. 128, 94

    Google Scholar 

  • Blumenthal, L.M. [ 1970 ]: Theory and Applications of Distance Geometry. 2nd. ed., Chelsea Publ. Co., New York, Zb1.50,385

    Google Scholar 

  • Busemann, H. [ 1955 ]: The Geometry of Geodesics. Academic Press, New York-London, Zb1. 112, 370

    Google Scholar 

  • Cartan, E. [ 1928 ]: Leçons sur la géométrie des espaces de Riemann. 2nd ed., Gauthier-Villars, Paris, Jbuch 54, 755

    Google Scholar 

  • Cesari, L. [ 1956 ]: Surface Area. Princeton Univ. Press, Princeton, N.J., Zb1. 73, 41

    Google Scholar 

  • DeTurck, D.M. and Kazdan, J.L. [ 1981 ]: Some regularity theorems in Riemannian geometry. Ann. Sci. Éc. Norm. Super., IV. Ser. 14, 243–260, Zb1. 486. 53014

    Google Scholar 

  • Einstein, A. [ 1916 ]: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsber. Preussische Akad. Wiss. 1, 688–696, Jbuch 46, 1293

    Google Scholar 

  • Gol’dshtein, V.M., Kuz’minov, V.I. and Shvedov, I.A. [ 1984 ]: A property of de Rham regularization operators. Sib. Mat. Zh. 25, No. 2, 104–111. English transi.: Sib. Math. J. 25, 251–257 (1984), Zb1. 546. 58002

    Google Scholar 

  • Gol’dshtein, V.M. and Reshetnyak, Yu.G. [ 1983 ]: Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings. Nauka, Moscow. English transi.: Quasiconformal Mappings and Sobolev’s spaces. Math. and its Appl., Soy. Ser. 54. Kluwer Acad. Publ., Dordrecht 1990, Zb1. 591. 46021

    Google Scholar 

  • Gromoll, D., Klingenberg, W. and Meyer, W. [ 1968 ]: Riemannsche Geometrie im Grossen. Lect. Not. Math. 55, Springer, Berlin-Heidelberg-New York, Zb1. 155, 307

    Google Scholar 

  • Gromov, M. [ 1981 ]: Structures métriques pour les variétés Riemanniennes. Cedic, Paris, Zb1. 509. 53034

    Google Scholar 

  • Hörmander, L. [ 1983 ]: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer, Berlin-Heidelberg-New York, Zb1. 521. 35001

    Google Scholar 

  • Hurewicz, W. and Wallman, H. [ 1941 ]: Dimension Theory. Princeton Univ. Press, Princeton, N.J., Zb1. 60, 398

    Google Scholar 

  • lonin, V.K. [ 1972 ]: Isoperimetric inequalities in simply-connected Riemannian spaces of non-positive curvature. Dokl. Akad. Nauk SSSR 203, 282–284. English transi.: Soy. Math., Dokl. 13, 378–381 (1972), Zb1. 258. 52011

    Google Scholar 

  • Kirk, W.A. [ 1964 ]: On the curvature of a metric space at a point. Pac. J. Math. 14, 195–198, Zb1. 168, 434

    Google Scholar 

  • Ladyzhenskaya, O.A. and Ural’tseva, N.N. [ 1964 ]: Linear and Quasilinear Elliptic Equations. Nauka, Moscow. English transi.: Academic Press, New-York-London 1968, Zb1. 143, 336

    Google Scholar 

  • Nikolaev, I.G. [ 1978 ]: Space of directions at a point in a space of curvature not greater than K. Sib. Mat. Zh. 19, 1341–1348. English transi.: Sib. Math. J. 19, 944–949 (1979), Zb1. 405. 53044

    Google Scholar 

  • Nikolaev, I.G. [ 1979 ]: Solution of the Plateau problem in spaces of curvature not greater than K. Sib. Mat. Zh. 20, 345–353.English transi.: Sib. Math. J. 20, 246–252 (1979), Zb1. 406. 53044

    Google Scholar 

  • Nikolaev, I.G. [ 1980 ]: Parallel translation and smoothness of the metric of spaces with bounded curvature. Dokl. Akad. Nauk SSSR 250, 1056–1058. English transi.: Soy. Math., Dokl. 21, 263–265 (1980), Zb1. 505. 53015

    Google Scholar 

  • Nilolaev, I.G. [ 1983a ]: Parallel translation of vectors in spaces with curvature that is bilaterally bounded in the sense of A.D. A.eksandrov. Sib. Mat. Zh. 24, No. 1, 130–145. English transi.: Sib. Math. J. 24, 106–119 (1983), Zb1. 539. 53030

    Google Scholar 

  • Nikolaev, I.G. [ 1983b ]: Smoothness of the metric of spaces with curvature that is bilaterally bounded in the sense of A.D. A.eksandrov. Sib. Mat. Zh. 24, No. 2, 114–132. English transi.: Sib. Math. J. 24, 247–263, Zb1. 547. 53011

    Google Scholar 

  • Nikolaev, I.G. [ 1987 ]: The curvature of a metric space at a point. All-Union Conf. on Geometry “in the large”. Novoskbirsk [Russian]

    Google Scholar 

  • Nikolaev, I.G. [ 1989 ]: Isotropic metric spaces. Dokl. Akad. Nauk SSSR 305, 1314–1317. English transi.: Sov. Math., Dokl. 39, 408–410, Zb1. 714. 54031

    Google Scholar 

  • Peters, S. [ 1986 ]: Konvergenz Riemannscher Mannigfaltigkeiten. Bonner Math. Schr. 169, Zb1. 648. 53024

    Google Scholar 

  • Peters, S. [ 1987 ]: Convergence of Riemannian manifolds. Compos. Math. 62, 3–16, Zb1. 618, 53036

    Google Scholar 

  • Reshetnyak, Yu.G. [ 1960a ]: Isothermal coordinates in manifolds of bounded curvature. I, II. Sib. Mat. Zh. 1, 88–116, 248–276 [Russian], Zb1. 108, 338

    Google Scholar 

  • Reshetnyak, Yu.G. [ 1960b ]: On the theory of spaces of curvature not greater than K. Mat. Sb., Nov. Ser. 52, 789–798 [Russian], Zb1. 101, 402

    Google Scholar 

  • Reshetnyak, Yu.G. [ 1968 ]: Non-expanding maps in spaces of curvature not greater than K. Sib. Mat. Zh. 9, 918–927. English transi.: Sib. Math. J. 9, 683–689, Zb1. 167, 508

    Google Scholar 

  • Rham de, G. [ 1955 ]: Variétés différentiables: Formes courants, formes harmoniques. Herrmann, Paris, Zb1. 65, 324

    Google Scholar 

  • Sabitov, I.Kh. and Shefel’, S.Z. [ 1976 ]: Connections between the order of smoothness of a surface and that of its metric. Sib. Mat. Zh. 17, 916–925. English transi.: Sib. Math. J. 17, 687–694, Zb1. 386. 53014

    Google Scholar 

  • Sasaki, S. [ 1958 ]: On the differential geometry of tangent bundles of Riemannian manifolds. I. Tôhoku Math. J., II. Ser. 10, 338–354, Zb1. 86, 150

    Google Scholar 

  • Sasaki, S. [ 1962 ]: On the differential geometry of tangent bundles of Riemannian manifolds. II. Tôhoku Math. J., II. Ser. 14, 146–155, Zbl. 109, 405

    Google Scholar 

  • Sobolev, S.L. [ 1950 ]: Some Applications of Functional Analysis to Mathematical Physics. Izdat. Leningrad. Univ., Leningrad [Russian]

    Google Scholar 

  • Toponogov, V.A. [ 1959 ]: Riemannian spaces of curvature bounded below. Usp. Mat. Nauk 14, No. 1, 87–130. English transi.: Transi., II. Ser., Am. Math. Soc. 37, 291–336 (1964), Zb1. 114, 375

    Google Scholar 

  • Wald, A. [ 1935 ]: Begründung einer koordinatenlosen Differentialgeometrie der Flächen. Ergeb. Math. Kolloq., Vol. 7, 24–46, Zb1. 14, 230

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berestovskij, V.N., Nikolaev, I.G. (1993). Multidimensional Generalized Riemannian Spaces. In: Reshetnyak, Y.G. (eds) Geometry IV. Encyclopaedia of Mathematical Sciences, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02897-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02897-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08125-5

  • Online ISBN: 978-3-662-02897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics