Skip to main content
Book cover

Positivity pp 229–254Cite as

Positive Operators on L p-spaces

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

Throughout this paper we denote by L p the Banach lattice of p-integrable functions on a σ-finite measure space (X, B, μ), where 1 ≤ p ≤ ∞. We will consider those aspects of the theory of positive linear operators, which are in some way special due to the fact the operators are acting on L p-spaces. For general information about positive operators on Banach lattices we refer to the texts [1]. [20], and [36]. Our focus on L p-spaces does not mean that in special cases some of the results can not be extended to a larger class of Banach lattices of measurable function such as Orlicz spaces or re-arrangement invariant Banach function spaces. However in many cases the results in these extensions are not as precise or as complete as in the case of L p-spaces. We will discuss results related to the boundedness of positive linear operators on L p-spaces. The most important result is the so-called Schur criterion for boundedness. This criterion is the most frequently used tool to show that a concrete positive linear operator is bounded from L p to L q. Then we will show how this result relates to the change of density result of Weis [33]. Next the equality case of Schur’s criterion is shown to be closely related to the question whether a given positive linear operator attains its norm. We discuss in detail the properties of norm attaining operators on L p-spaces and discuss as an example the weighted composition operators on L p-spaces. Then we return to the Schur criterion and show how it can be applied to the factorization theorems of Maurey and Nikišin. Most results mentioned in this paper have appeared before in print, but sometimes only implicitly and scattered over several papers. Also a number of the proofs presented here are new.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.A. Abramovitch, C.D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, AMS, 2002.

    Google Scholar 

  2. Y. Abramovitch, C.D. Aliprantis, O. Burkinshaw, The Daugavet equation in uniform convex Banach spaces, J. Funct. Anal. 97 (1991), 215–230.

    Article  MathSciNet  Google Scholar 

  3. T. Ando, Banachverbände und positive Projektionen, Math. Z. 109, 121–103.

    Google Scholar 

  4. B. Beauzamy, Introduction to Banach spaces and their geometry, North-Holland, 1982.

    Google Scholar 

  5. S. Bloom, Solving Weighted Norm Inequalities using the Rubio de Francia Algorithm, Proc. AMS 101 (1987), 306–312.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Donner, Extension of Positive Operators and Korovkin Theorems, Lect. Notes in Math. 904, (1982), 1–182.

    MathSciNet  Google Scholar 

  7. D.H. Fremlin, A positive compact operator, Manuscripta Math. 15 (1975), 323–327.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Finet and R. Paya, Norm attaining operators from L 1 into L , Israel J. Math. 108 (1998), 139–143.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Gagliardo, On integral transformations with positive kernel, Proc. AMS, 16 (1965), 429–434.

    Article  MathSciNet  Google Scholar 

  10. R. Grzaślewicz, On isometric domains of positive operators on L p-spaces, Colloq. Math. 52, (1987), 251–261.

    MathSciNet  MATH  Google Scholar 

  11. R. Grzaślewicz, Approximation theorems for positive operators on L p-spaces, J. Approx. Theory, 63 (1990), 123–136.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Howard and A.R. Schep, Norms of positive operators on L p-spaces, Proc. AMS 109 (1990), 135–146.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Iwanik, Norm attaining operators on Lebesgue spaces, Pac. J. Math. 83, (1979), 381–386.

    MATH  MathSciNet  Google Scholar 

  14. C-H. Kan, Norming vectors of linear operators between L p spaces, Pac. J. of Math. 150, (1990), 309–327.

    MathSciNet  Google Scholar 

  15. R. Kerman and E. Sawyer, On weighted norm inequalities for positive linear operators, Proc. AMS 105 (1989), 589–593.

    Article  MATH  MathSciNet  Google Scholar 

  16. U. Krengel, Ergodic Theorems, De Gruyter, 1985

    Google Scholar 

  17. M. Koskela, A characterization of non-negative matrix operators on l p to l q with ∞ > pq > 1, Pac. J. of Math., 75, (1978), 165–169.

    MATH  MathSciNet  Google Scholar 

  18. J. Lindenstraus, On operators which attain their norm, Isr. J. of Math., 1 (1963), 139–148.

    Article  Google Scholar 

  19. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L p, Astérisque 11, 1974.

    Google Scholar 

  20. Peter Meyer-Nieberg, Banach lattices, Springer-Verlag, 1991.

    Google Scholar 

  21. E.M. Nikišin, Resonance theorems and superlinear operators, Russ. Math. Surv. 25 (1970), 124–187.

    Google Scholar 

  22. G. Pisier, Complex interpolation and regular operators between Banach lattices, Arch. Math. 62 (1994), 261–269.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Paya and Y. Saleh, Norm attaining operators from L 1(μ) into L (ν), Arch. Math. 75, (2000), 380–388.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Sinnamon, Schur’s lemma and the best constants in weighted norm inequalities, Le Matematiche 57 (2002), 185–204.

    MATH  MathSciNet  Google Scholar 

  25. A.R. Schep, Positive diagonal and triangular operators, Journ. of Operator Theory, 3(1980), 165–178.

    MATH  MathSciNet  Google Scholar 

  26. A.R. Schep, Factorization of positive multilinear maps, Illin J. of Math. 28 (1984), 579–591.

    MATH  MathSciNet  Google Scholar 

  27. A.R. Schep, Daugavet type inequalities for operators on L p-spaces, Positivity 7 (2003), 103–111.

    Article  MATH  MathSciNet  Google Scholar 

  28. A.R. Schep, Convex Solid subsets of L 0(X, μ), Positivity 9 (2005), 491–499.

    Article  MATH  MathSciNet  Google Scholar 

  29. E.M. Semenov and B.S. Tsirel’son, The problem of smallness of operator blocks in L p spaces, Z. Anal. Anwendungen, 2 (1983), 367–373. (Russian)

    MATH  MathSciNet  Google Scholar 

  30. E.M. Semenov and A.M. Shteinberg, Norm estimates of operator blocks in Banach lattices Math. USSR Sbornik, 54 (1986), 317–333.

    Article  MATH  Google Scholar 

  31. J.J. Uhl, Norm attaining operators on L 1[0, 1] and the Radon-Nikodym property, Pac. J. Math. 63, (1976), 293–300.

    MATH  MathSciNet  Google Scholar 

  32. D. Vere-Jones, Ergodic properties of non-negative matrices-II, Pac. J. of Math., 26, (1968), 601–620.

    MATH  MathSciNet  Google Scholar 

  33. L. Weis, Integral operators and changes of density, Indiana Univ. Math. J. 31 (1982), 83–96.

    Article  MATH  MathSciNet  Google Scholar 

  34. A.W. Wickstead, Positive compact operators on Banach lattices: some loose ends. Positivity, 4 (2000), 313–325.

    Article  MATH  MathSciNet  Google Scholar 

  35. A.C. Zaanen, Integration, North-Holland, 1967.

    Google Scholar 

  36. A.C. Zaanen, Riesz Spaces II, North-Holland, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG2007

About this chapter

Cite this chapter

Schep, A.R. (2007). Positive Operators on L p-spaces. In: Boulabiar, K., Buskes, G., Triki, A. (eds) Positivity. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8478-4_8

Download citation

Publish with us

Policies and ethics