Skip to main content

Embedding Group Algebras into Finite von Neumann Regular Rings

  • Conference paper
Modules and Comodules

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let G be a group and let K be a field of characteristic zero. We shall prove that KG can be embedded into a von Neumann unit-regular ring. In the course of the proof, we shall obtain a result relevant to the Atiyah conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.K. Berberian. The maximal ring of quotients of a finite von Neumann algebra. Rocky Mountain J. Math., 12(1):149–164, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  2. Sterling K. Berberian. Baer *-rings. Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 195.

    Google Scholar 

  3. K. Bonvallet, B. Hartley, D.S. Passman, and M.K. Smith. Group rings with simple augmentation ideals. Proc. Amer. Math. Soc., 56:79–82, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gábor Elek and Endre Szabó. Sofic groups and direct finiteness. J. Algebra, 280(2):426–434, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carl Faith. Dedekind finite rings and a theorem of Kaplansky. Comm. Algebra, 31(9):4175–4178, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  6. K.R. Goodearl. von Neumann regular rings. Robert E. Krieger Publishing Co. Inc., Malabar, FL, second edition, 1991.

    MATH  Google Scholar 

  7. Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Vol. II, volume 16 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997. Advanced theory, Corrected reprint of the 1986 original.

    Google Scholar 

  8. Dinesh Khurana and T.Y. Lam. Rings with internal cancellation. J. Algebra, 284(1):203–235, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  9. Wolfgang LĂĽck. L 2-invariants: theory and applications to geometry and K-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  10. W.R. Scott. Algebraically closed groups. Proc. Amer. Math. Soc., 2:118–121, 1951.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Linnell, P.A. (2008). Embedding Group Algebras into Finite von Neumann Regular Rings. In: Brzeziński, T., Gómez Pardo, J.L., Shestakov, I., Smith, P.F. (eds) Modules and Comodules. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8742-6_19

Download citation

Publish with us

Policies and ethics