Skip to main content

Convergence to Fractional Brownian Motion and to the Telecom Process: the Integral Representation Approach

  • Chapter
In and Out of Equilibrium 2

Part of the book series: Progress in Probability ((PRPR,volume 60))

Abstract

It has become common practice to use heavy-tailed distributions in order to describe the variations in time and space of network traffic workloads. The asymptotic behavior of these workloads is complex; different limit processes emerge depending on the specifics of the work arrival structure and the nature of the asymptotic scaling. We focus on two variants of the infinite source Poisson model and provide a coherent and unified presentation of the scaling theory by using integral representations. This allows us to understand physically why the various limit processes arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Barakat, P. Thiran, G. Iannaccone, C. Diot and P. Owezarski (2003). Modeling Internet backbone traffic at the flow level. IEEE Transactions on Signal Processing, 51:8, Aug. 2003, 211–2124.

    Article  Google Scholar 

  2. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev and M.S. Taqqu (2003). Semi-parametric estimation of the long-range dependence parameter: A survey. In: Theory and Applications of Long-Range Dependence, Eds. P. Doukhan, G. Oppenheim, M.S. Taqqu, Birkhäuser, Basel, 2003.

    Google Scholar 

  3. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev and M.S. Taqqu (2003). Generators of long-range dependence processes: A survey. In: Theory and Applications of Long-Range Dependence, Eds. P. Doukhan, G. Oppenheim, M.S. Taqqu, Birkhäser, Basel, 2003.

    Google Scholar 

  4. A. Benassi, S. Jaffard and D. Roux (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoamericana, 13, 19–90.

    MATH  MathSciNet  Google Scholar 

  5. A. Benassi, S. Cohen and J. Istas (2002). Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8, 97–115.

    MATH  MathSciNet  Google Scholar 

  6. H. Biermé, A. Estrade and I. Kaj (2006). About scaling behavior of random balls models. 6th Int. Conf. on Stereology, Spatial Statistics and Stochastic Geometry, Prague, June 2006.

    Google Scholar 

  7. H. Biermé, A. Estrade and I. Kaj (2007). Self-similar random fields and rescaled random balls models. Preprint.

    Google Scholar 

  8. P. Billingsley (1968). Convergence of probability measures. John Wiley and Sons, New York, 1968.

    MATH  Google Scholar 

  9. N.H. Bingham, C.M. Goldie and J.L. Teugels (1987). Regular variation. Cambridge University Press, Cambridge 1987.

    MATH  Google Scholar 

  10. M. çaĝlar (2004). A long-range dependent workload model for packet data traffic. Mathematics of Operations Research 29:1, 92–105.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Cohen and M.S. Taqqu (2003). Small and large scale behavior of the Poissonized Telecom process. Methodology and Computing in Applied Probability 6, 363–379.

    Article  MathSciNet  Google Scholar 

  12. G. Fay, F. Roueff and Ph. Soulier (2007), Estimation of the memory parameter of the infinite-source Poisson process. Bernoulli 13 473–491.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Gaigalas (2006). A Poisson bridge between fractional Brownian motion and stable Lévy motion. Stochastic Process. Appl. 116, 447–462.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Gaigalas and I. Kai (2003). Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9, 671–703.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Jedidi, J. Almhana, V. Choulakian and R. McGorman (2004). A general Poisson shot noise traffic model, and functional convergence to stable processes. Preprint, University of Moncton, NB, Canada.

    Google Scholar 

  16. I. Kaj, A. Martin-Löf (2004). Scaling limit results for the sum of many inverse Lévy subordinators. U.U.D.M. 2004: 13, Department of Mathematics, Uppsala University.

    Google Scholar 

  17. I. Kaj (2005). Limiting fractal random processes in heavy-tailed systems. In: Fractals in Engineering, New Trends in Theory and Applications, pp. 199–218. Eds. J. Levy-Lehel, E. Lutton. Springer-Verlag London 2005.

    Google Scholar 

  18. I. Kaj, L. Leskelä, I. Norros and W. Schmidt (2007)., Scaling limits for random fields with long-range dependence. Ann. Probab. 35:2, 528–550.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.F.C. Kingman (1993). Poisson Processes. Oxford University Press, Oxford, U.K.

    MATH  Google Scholar 

  20. T.G. Kurtz (1996). Limit theorems for workload input models. F.P. Kelly, S. Zachary, I. Ziedins, eds. Stochastic Networks, theory and applications. Clarendon Press, Oxford, U.K.

    Google Scholar 

  21. J.B. Levy and M.S. Taqqu (2000). Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli 6, 23–44.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Maulik, S. Resnick and H. Rootzén (2003). A network traffic model with random transmission rate. Adv. Appl. Probab. 39, 671–699.

    Google Scholar 

  23. Th. Mikosch, S. Resnick, H. Rootzén and A. Stegeman (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Pipiras and M.S. Taqqu (2000). The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable motion. Bernoulli 6, 607–614.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Pipiras and M.S. Taqqu (2002). The structure of self-similar stable mixed moving averages. The Annals of Probability 30, 898–932.

    Article  MATH  MathSciNet  Google Scholar 

  26. V. Pipiras and M.S. Taqqu (2008). Small and Large Scale Asymptotics of some Lévy Stochastic Integrals. Methodol. Comput. Appl. Probab. 10, 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Pipiras, M.S. Taqqu and J.B. Levy (2004). Slow, fast and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed. Bernoulli 10, 121–163.

    Article  MATH  MathSciNet  Google Scholar 

  28. W.A. Rosenkrantz and J. Horowitz (2002). The infinite source model for internet traffic: statistical analysis and limit theorems. Methods and applications of analysis, 9:3, 445–462.

    MATH  MathSciNet  Google Scholar 

  29. G. Samorodnitsky and M.S. Taqqu (1994). Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York 1994.

    MATH  Google Scholar 

  30. A. Stegeman (2002). The nature of the beast: analyzing and modeling computer network traffic. Thesis, University of Groningen.

    Google Scholar 

  31. M.S. Taqqu (2002). The modeling of Ethernet data and of signals that are heavy-tailed with infinite variance. Scand. J. Stat. 29, 273–295.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. von Bahr and C.G. Esseen (1965). Inequalities for the rth absolute moment of a sum of random variables, 1≤r≤2. Ann. Math. Statist. 36, 299–303.

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Willinger, V. Paxson, R.H. Riedi and M.S. Taqqu (2003). Long-range dependence and data network traffic. In: Theory and Applications of Long-Range Dependence, Eds. P. Doukhan, G. Oppenheim M.S. Taqqu, Birkhäuser, Basel, 2003.

    Google Scholar 

  34. R. Wolpert and M.S. Taqqu (2005). Fractional Ornstein-Uhlenbeck Lévy processes and the Telecom process: upstairs and downstairs. Signal Processing 85:8, 1523–1545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Kaj, I., Taqqu, M.S. (2008). Convergence to Fractional Brownian Motion and to the Telecom Process: the Integral Representation Approach. In: Sidoravicius, V., Vares, M.E. (eds) In and Out of Equilibrium 2. Progress in Probability, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8786-0_19

Download citation

Publish with us

Policies and ethics