Skip to main content

Laws of Large Numbers and Nearest Neighbor Distances

  • Chapter
  • First Online:
Advances in Directional and Linear Statistics

Abstract

We consider the sum of power weighted nearest neighbor distances in a sample of size n from a multivariate density f of possibly unbounded support. We give various criteria guaranteeing that this sum satisfies a law of large numbers for large n, correcting some inaccuracies in the literature on the way. Motivation comes partly from the problem of consistent estimation of certain entropies of f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baryshnikov Y, Yukich JE (2005) Gaussian limits for random measures in geometric probability. Ann Appl Probab 15:213–253

    Article  MATH  MathSciNet  Google Scholar 

  2. Beirlant J, Dudewicz E, Györfi L, Meulen E (1997) Non-parametric entropy estimation: An overview. Int J Math Stat Sci 6(1):17–39

    MATH  MathSciNet  Google Scholar 

  3. Bickel P, Breiman L (1983) Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann Probab 11:185–214

    Article  MATH  MathSciNet  Google Scholar 

  4. Costa J, Hero III A (2006) Determining intrinsic dimension and entropy of high-dimensional shape spaces. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Birkhäuser, Basel, pp 231–252

    Chapter  Google Scholar 

  5. Evans D, Jones AJ, Schmidt WM (2002) Asymptotic moments of near-neighbour distance distributions. Proc R Soc Lond A Math Phys Sci 458:2839–2849

    Article  MATH  MathSciNet  Google Scholar 

  6. Feller W (1971) An Introduction to probability theory and its applications, vol 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  7. Havrda J, Charvát F (1967) Quantification method of classification processes. Concept of structural α-entropy. Kybernetika (Prague) 3:30–35

    MATH  Google Scholar 

  8. Jiménez R, Yukich JE (2002) Strong laws for Euclidean graphs with general edge weights. Stat Probab Lett 56:251–259

    Article  MATH  Google Scholar 

  9. Kozachenko LF, Leonenko NN (1987) A statistical estimate for the entropy of a random vector. Probl Inf Transm 23:95–101

    MATH  MathSciNet  Google Scholar 

  10. Leonenko NN, Pronzato L, Savani V (2008) A class of Rényi information estimators for multidimensional densities. Ann Stat 36:2153–2182

    Article  MATH  MathSciNet  Google Scholar 

  11. Loftsgaarden DO, Quesenberry CP (1965) A nonparametric estimate of a multivariate density function. Ann Math Stat 36:1049–1051

    Article  MATH  MathSciNet  Google Scholar 

  12. Penrose MD (2007a) Gaussian limits for random geometric measures. Electron J Probab 12:989–1035

    MATH  MathSciNet  Google Scholar 

  13. Penrose MD (2007b) Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13:1124–1150

    Article  MATH  MathSciNet  Google Scholar 

  14. Penrose MD, Yukich JE (2001) Central limit theorems for some graphs in computational geometry. Ann Appl Probab 11:1005–1041

    MATH  MathSciNet  Google Scholar 

  15. Penrose MD, Yukich JE (2003) Weak laws of large numbers in geometric probability. Ann Appl Probab 13:277–303

    Article  MATH  MathSciNet  Google Scholar 

  16. Ranneby B, Jammalamadaka SR, Teterukovskiy A (2005) The maximum spacing estimation for multivariate observations J Stat Plan Inference 129:427–446

    MATH  MathSciNet  Google Scholar 

  17. Rényi A (1961) On measures of information and entropy. In: Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability, vol 1960. University of California Press, Berkeley, pp 547–561

    Google Scholar 

  18. Shank N (2009) Nearest-neighbor graphs on the Cantor set. Adv Appl Probab 41:38–62

    Article  MATH  MathSciNet  Google Scholar 

  19. Wade A (2007) Explicit laws of large numbers for random nearest neighbor type graphs. Adv Appl Probab 39:326–342

    Article  MATH  MathSciNet  Google Scholar 

  20. Yukich JE (1998) Probability theory of classical euclidean optimization problems. Lecture notes in mathematics, vol 1675. Springer, Berlin

    MATH  Google Scholar 

  21. Zhou S, Jammalamadaka SR (1993) Goodness of fit in multidimensions based on nearest neighbour distances. J Nonparametr Stat 2:271–284

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research of Matthew Penrose supported in part by the Alexander von Humboldt Foundation through a Friedrich Wilhelm Bessel Research Award. Research of J.E. Yukich supported in part by NSF grant DMS-0805570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew D. Penrose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penrose, M.D., Yukich, J.E. (2011). Laws of Large Numbers and Nearest Neighbor Distances. In: Wells, M., SenGupta, A. (eds) Advances in Directional and Linear Statistics. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2628-9_13

Download citation

Publish with us

Policies and ethics