Skip to main content

Type Theory and Homotopy

  • Chapter
  • First Online:
Epistemology versus Ontology

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 27))

Abstract

The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Logic, Geometry, and Algebra which has recently come to light in the form of an interpretation of the constructive type theory of Per Martin-Löf into homotopy theory and higher-dimensional category theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A groupoid is like a group, but with a partially-defined composition operation. Precisely, a groupoid can be defined as a category in which every arrow has an inverse. A group is thus a groupoid with only one object. Groupoids arise in topology as generalized fundamental groups, not tied to a choice of basepoint (see below).

References

  • Aczel, P. 1974. The strength of Martin-Löf’s type theory with one universe. In Proceedings of the symposium on mathematical logic, Oulu, ed. S. Miettinen and J.J. Vaananen, 1–32.

    Google Scholar 

  • Awodey, S., and M.A. Warren. 2009. Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society 146: 45–55.

    Article  Google Scholar 

  • Awodey, S., P. Hofstra, and M.A. Warren. 2009. Martin-Löf complexes. Submitted, on the arXiv as arXiv:0906.4521.

    Google Scholar 

  • Batanin, M.A. 1998. Monoidal globular categories as a natural environment for the theory of weak n-categories. Advances in Mathematics 136(1): 39–103.

    Article  Google Scholar 

  • Baues, H.-J. 1995. Homotopy types. In Handbook of algebraic topology, ed. I.M. James, 1–72. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Bousfield, A.K. 1977. Constructions of factorization systems in categories. Journal of Pure and Applied Algebra 9: 207–220.

    Article  Google Scholar 

  • Brown, R. 1987. From groups to groupoids. Bulletin of the London Mathematical Society 19: 113–134.

    Article  Google Scholar 

  • Cartmell, J. 1986. Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic 32(3): 209–243.

    Article  Google Scholar 

  • Cheng, E. 2007. An ω-category with all duals is an ω-groupoid. Applied Categorical Structures 15(4): 439–453.

    Article  Google Scholar 

  • Dwyer, W.G., and J. Spalinski. 1995. Homotopy theories and model categories. In Handbook of algebraic topology, ed. I.M. James, 73–126. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Dybjer, P. 1996. Internal type theory. In Proceedings of the BRA TYPES workshop, Torino, June 1995. Lecture notes in computer science, vol. 1158. Berlin: Springer.

    Google Scholar 

  • Gambino, N., and R. Garner. 2008. The identity type weak factorisation system. Theoretical Computer Science 409(3): 94–109.

    Article  Google Scholar 

  • Garner, R. 2007. Cofibrantly generated natural weak factorisation systems. On the arXiv as math.CT/0702290.

    Google Scholar 

  • Garner, R. 2009a. Understanding the small object argument. Applied Categorical Structures 17(3): 247–285.

    Article  Google Scholar 

  • Garner, R. 2009b. Two-dimensional models of type theory. Mathematical Structures in Computer Science 19(4): 687–736.

    Article  Google Scholar 

  • Grothendieck, A. 1983. Pursuing stacks. Unpublished letter to Quillen

    Google Scholar 

  • Hofmann, M. 1995a. Extensional concepts in intensional type theory. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Hofmann, M. 1995b. On the interpretation of type theory in locally cartesian closed categories. In Computer science logic 1994, ed. J. Tiuryn and Leszek Pacholski, 427–441. Berlin/New York: Springer.

    Google Scholar 

  • Hofmann, M. 1997. Syntax and semantics of dependent types. In Semantics and logics of computation, Publications of the Newton Institute. ed. P. Dybjer and A.M. Pitts 79–130. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hofmann, M., and T. Streicher. 1995. The groupoid interpretation of type theory. In Twenty-five years of constructive type theory. Oxford logic guides, vol. 36, ed. G. Sambin and J. Smith, 83–111. Oxford: Oxford University Press.

    Google Scholar 

  • Hovey, M. 1999. Model categories, Mathematical surveys and monographs, vol. 63. Providence: American Mathematical Society.

    Google Scholar 

  • Howard, W.A. 1980. The formulae-as-types notion of construction. In To H. B. Curry: Essays on combinatory logic, lambda Calculus and formalism, ed. J.P. Seldin and J.R. Hindley, 479–490. London: Academic Press.

    Google Scholar 

  • Jacobs, B. 1999. Categorical logic and type theory. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Johnstone, P.T. 2003. Sketches of an elephant, vol. 2. Oxford: Oxford University Press.

    Google Scholar 

  • Joyal, A. The theory of quasi-categories. In preparation.

    Google Scholar 

  • Joyal, A. 2002. Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra 175: 207–222.

    Article  Google Scholar 

  • Joyal, A., and M. Tierney. 1984. An extension of the galois theory of grothendieck, Memoirs of the American Mathematical Society, vol. 51. Providence: American Mathematical Society.

    Google Scholar 

  • Joyal, A., and M. Tierney. 1991. Strong stacks and classifying spaces. In Category theory (Como, 1990), Lecture notes in mathematics, vol. 1488, 213–236. Berlin: Springer.

    Google Scholar 

  • Kapranov, M.M., and V.A. Voevodsky. 1991. -groupoids and homotopy types. Cahiers de Topologie et Géometrie Différentielle Catégoriques 32(1): 29–46.

    Google Scholar 

  • Leinster, T. 2002. A survey of definitions of n-category. Theory and Applications of Categories 10: 1–70 (electronic).

    Google Scholar 

  • Leinster, T. 2004. Higher operads, higher categories, London mathematical society lecture note series, vol. 298. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lumsdaine, P.L. 2009. Weak ω-categories from intensional type theory. In Typed Lambda-calculus and its applications.

    Google Scholar 

  • Lurie, J. 2009. Higher topos theory. Princeton: Princeton University Press.

    Google Scholar 

  • Martin-Löf, P. 1975. An intuitionistic theory of types: Predicative part. In Logic Colloquium 73, ed. H.E. Rose and J.C. Shepherdson, 73–118. Amsterdam: North-Holland.

    Google Scholar 

  • Martin-Löf, P. 1979. Constructive mathematics and computer programming. In Proceedings of the 6th international congress for logic, methodology and philosophy of science. Amsterdam: North-Holland.

    Google Scholar 

  • Martin-Löf, P. 1984. Intuitionistic type theory. Napoli: Bibliopolis.

    Google Scholar 

  • Martin-Löf, P. 1998. An intuitionistic theory of types. In Twenty-five years of constructive type theory, Oxford logic guides, vol. 36, ed. G. Sambin and J. Smith, 127–172. Oxford: Oxford University Press. This paper was originally a 1972 preprint from the Department of Mathematics at the University of Stockholm.

    Google Scholar 

  • Moerdijk, I., and E. Palmgren. 2000. Wellfounded trees in categories. Annals of Pure and Applied Logic 104: 189–218.

    Article  Google Scholar 

  • Moerdijk, I., and E. Palmgren. 2002. Type theories, toposes and constructive set theory: Predicative aspects of AST. Annals of Pure and Applied Logic 114: 155–201.

    Article  Google Scholar 

  • Morel, F., and V. Voevodsky. 1999. A 1-homotopy theory of schemes. Publications Mathématiques de l’I.H.E.S. 90: 45–143.

    Google Scholar 

  • Nordström, B., K. Petersson, and J.M. Smith. 1990. Programming in Martin-Löf’s type theory. An introduction. Oxford: Oxford University Press.

    Google Scholar 

  • Palmgren, E. 2003. Groupoids and local cartesian closure. Department of Mathematics Technical Report 2003:21, Uppsala University.

    Google Scholar 

  • Quillen, D. 1967. Homotopical algebra, Lecture notes in mathematics, vol. 43. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Riehl, E. 2011. Algebraic model structures. New York Journal of Mathematics 17: 173–231.

    Google Scholar 

  • Sambin, G., and J. Smith (eds.). 1998. Twenty-five years of constructive type theory, Oxford logic guides, vol. 36. Oxford: Oxford University Press.

    Google Scholar 

  • Seely, R.A.G. 1984. Locally cartesian closed categories and type theory. Mathematical Proceedings of the Cambridge Philosophical Society 95: 33–48.

    Article  Google Scholar 

  • Street, R. 2000. The petit topos of globular sets. Journal of Pure and Applied Algebra 154: 299–315.

    Article  Google Scholar 

  • Streicher, T. 1991. Semantics of type theory, Progress in theoretical computer science. Basel: Birkhauser.

    Google Scholar 

  • Streicher, T. 1993. Investigations into intensional type theory. Habilitationsschrift, Ludwig-Maximilians-Universität München.

    Google Scholar 

  • Théry, L., P. Letouzey, and G. Gonthier. 2006. Coq. In The seventeen provers of the world, Lecture notes in computer Science, ed. F. Wiedijk, 28–35. Berlin/Heidelberg: Springer.

    Google Scholar 

  • van den Berg, B. 2006. Types as weak ω-categories. Lecture delivered in Uppsala, and unpublished notes.

    Google Scholar 

  • van den Berg, B., and R. Garner. 2010. Types are weak ω-groupoids. Proceedings of the London Mathematical Society 102: 370–394

    Article  Google Scholar 

  • van den Berg, B., and R. Garner. 2012. Topological and simplicial models of identity types. To appear in ACM Transactions on Computational Logic 13(1): 1–44.

    Google Scholar 

  • Voevodsky, V. 2006. A very short note on the homotopy λ-calculus. Unpublished note.

    Google Scholar 

  • Warren, M.A. 2008. Homotopy theoretic aspects of constructive type theory. Ph.D. thesis, Carnegie Mellon University.

    Google Scholar 

  • Warren, M. 2010. The strict omega-groupoid interpretation of type theory. Forthcoming in Models, logics and higher-dimensional categories: A tribute to the work of Mihály Makkai. Providence: American Mathematical Society

    Google Scholar 

Download references

Acknowledgements

Thanks to Pieter Hofstra, Peter Lumsdaine, and Michael Warren for their contributions to this article, and to Per Martin-Löf and Erik Palmgren for supporting this work over many years.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Awodey, S. (2012). Type Theory and Homotopy. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds) Epistemology versus Ontology. Logic, Epistemology, and the Unity of Science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4435-6_9

Download citation

Publish with us

Policies and ethics