Skip to main content

Disordered Ising Systems and Random Cluster Representations

  • Chapter
Probability and Phase Transition

Part of the book series: NATO ASI Series ((ASIC,volume 420))

Abstract

We discuss the Fortuin-Kasteleyn (FK) random cluster representation for Ising models with no external field and with pair interactions which need not be ferromagnetic. In the ferromagnetic case, the close connections between FK percolation and Ising spontaneous magnetization and the availability of comparison inequalities to independent percolation have been applied to certain disordered systems, such as dilute Ising ferromagnets and quantum Ising models in random environments; we review some of these applications. For non-ferromagmetic disordered systems, such as spin glasses, the state of the art is much more primitive. We discuss some of the many open problems for spin glasses and show how the FK representation leads to one small result, that there is uniqueness of the spin glass Gibbs distribution above the critical temperature of the associated ferromagnet.

Supported in part by the National Science Foundation under Grant DMS 92–09053; thanks are due the Isaac Newton Institute for Mathematical Sciences for support and hospitality; NATO for its travel support to attend this Advanced Study Institute; and C. Borgs and J. Bricmont for help with references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenman, M., Chayes, J., Chayes, L., and Newman, C. M. (1987). The phase boundary in dilute and random Ising and Potts ferromagnets. Journal of Physics A: Mathematical and General 20, L313-L318.

    Article  MathSciNet  ADS  Google Scholar 

  • Aizenman, M., Chayes, J., Chayes, L., and Newman, C. M. (1988). Discontinuity of the magnetization in one-dimensional 1/ ∣x-y∣2 Ising and Potts models. Journal of Statistical Physics 50, 1–40.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Aizenman, M., Klein, A., and Newman, C. M. (1993). Percolation methods for disordered quantum Ising models. In Phase Transitions: Mathematics, Physics, Biology, ... (R. Kotecky, ed.), World Scientific, Singapore (to appear).

    Google Scholar 

  • Aizenman, M. and Nachtergaele, B. (1993). Geometric aspects of quantum spin systems. Communications in Mathematical Physics (to appear).

    Google Scholar 

  • Aizenman, M. and Wehr, J. (1990). Rounding effects of quenched randomness on first-order phase transitions. Communications in Mathematical Physics 130, 489–528.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Berg, J. van den and Maes, C. (1992). Disagreement percolation in the study of Markov fields. Annals of Probability, to appear.

    Google Scholar 

  • Binder, K. and Young, A. P. (1986). Spin glasses: Experimental facts, theoretical concepts and open questions. Review of Modern Physics 58, 801–976.

    Article  ADS  Google Scholar 

  • Campanino, M., Olivieri, E., and van Enter, A. C. D. (1987). One dimensional spin glasses with potential decay 1/r1+ε. Absence of phase transitions and cluster properties. Communications in Mathematical Physics 108, 241–255.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dobrushin, R. L. (1968). The description of a random field by means of conditional probabilities and conditions of its regularity. Theory of Probability and its Applications 13, 197–224.

    Article  Google Scholar 

  • Dobrushin, R. L. and Shlosman, S. B. (1985). Constructive criteria for the uniqueness of a Gibbs field. In Statistical Mechanics and Dynamical Systems (J. Fritz, A. Jaffe, and D. Szász, eds.), Birkhäuser, Boston, pp. 371–403.

    Google Scholar 

  • Edwards, S. and Anderson, P. W. (1975). Theory of spin glasses. Journal of Physics F 5, 965–974.

    Article  ADS  Google Scholar 

  • Enter, A. C. D. van and Fröhlich, J. (1985). Absence of symmetry breaking for N-vector spin glass models in two dimensions. Communications in Mathematical Physics 98, 425–432.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. The Physical Review D 38, 2009–2012.

    Article  MathSciNet  ADS  Google Scholar 

  • Fisher, D. S. and Huse, D. A. (1987). Absence of many states in realistic spin glasses. Journal of Physics A: Mathematical and General 20, L1005–L1010.

    Article  MathSciNet  ADS  Google Scholar 

  • Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564.

    Article  MathSciNet  ADS  Google Scholar 

  • Fröhlich, J. and Zegarlinski, B. (1987). The high-temperature phase of long-range spin glasses. Communications in Mathematical Physics 110, 121–155.

    Article  MathSciNet  ADS  Google Scholar 

  • Gandolfi, A., Keane, M. S., and Newman, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probability Theory and Related Fields 92, 511–527.

    Article  MathSciNet  Google Scholar 

  • Gandolfi, A., Newman, C. M., and Stein, D. L. (1993). Exotic states in long range spin glasses. Communications in Mathematical Physics, to appear.

    Google Scholar 

  • Griffiths, R. B. (1971). Phase transitions. In Statistical Mechanics and Quantum Field Theory (C. DeWitt and R. Stora, eds.), Gordon and Breach, New York, pp. 241–279.

    Google Scholar 

  • Grimmett, G. R. (1994). Percolative problems. In Probability and Phase Transition (G. Grimmett, ed.), Kluwer, Dordrecht, pp. 69–86, this volume.

    Google Scholar 

  • Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Proceedings of the Cambridge Philosophical Society 56, 13–20.

    Article  ADS  MATH  Google Scholar 

  • Huse, D. A. and Fisher, D. S. (1987). Pure states in spin glasses. Journal of Physics A: Mathematical and General 20, L997-L1003.

    Article  MathSciNet  ADS  Google Scholar 

  • Kasai, Y. and Okiji, A. (1988). Percolation problem describing ±J Ising spin glass system. Progress in Theoretical Physics 79, 1080–1094.

    Article  ADS  Google Scholar 

  • Kasteleyn, P. W. and Fortuin, C. M. (1969). Phase transitions in lattice systems with random local properties. Journal of the Physical Society of Japan 26, 11–14.

    Google Scholar 

  • Lebowitz, J. L. and Martin-Löf, A. (1972). On the uniqueness of the equilibriumn state for Ising spin systems. Communications in Mathematical Physics 25, pp. 276–282.

    Article  MathSciNet  ADS  Google Scholar 

  • Liggett, T. M. (1992). The survival of one-dimensional contact processes in random environments. Annals of Probability 20, 696–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, C. M. (1991). Ising models and dependent percolation. In Topics in Statistical Dependence (H. W. Block, A. R. Sampson, and T. H. Savits, ed.), IMS Lecture Notes — Monograph Series, 16, 395–401.

    Google Scholar 

  • Newman, C. M. and Stein, D. L. (1992). Multiple states and thermodynamic limits in short-ranged Ising spin glass models. The Physical Review B 46, 973–982.

    ADS  Google Scholar 

  • Parisi, G. (1979). Infinite number of order parameters for spin-glasses. Physical Review Letters 43, 1754–1756.

    Article  ADS  Google Scholar 

  • Reger, J. D., Bhatt, R. N., and Young, A. P. (1990). Monte Carlo study of the order-paremeter distribution in the four-dimensional Ising spin glass. Physical Review Letters 64, 1859–1862.

    Article  ADS  Google Scholar 

  • Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin glass. Physical Review Letters 35, 1792–1796.

    Article  ADS  Google Scholar 

  • Swendsen, R. H. and Wang, J. S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters 58, 86–88.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newman, C.M. (1994). Disordered Ising Systems and Random Cluster Representations. In: Grimmett, G. (eds) Probability and Phase Transition. NATO ASI Series, vol 420. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8326-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8326-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4370-2

  • Online ISBN: 978-94-015-8326-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics