Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 407))

Abstract

Let A be a commutative ring and q a power of 2. We investigate the étale Chern classes

$${c_{ik}}:{K_n}\left( {A;{\Bbb Z}/q} \right) \to H_{et}^k\left( {A;\mu _q^{ \otimes i}} \right)$$

which are defined whenever i ≥ 1 and n + k = 2i. These are group homomorphisms except when n = 2 and q is even. The usual product formula for c ik ({a,b}) remains valid, except when q = 2 and i ≥ 3, when there is a correction term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71 - 115.

    MathSciNet  MATH  Google Scholar 

  2. M. Artin and J.-L. Verdier, Seminar on étale cohomology of number fields,AMS Summer Institute on Algebraic Geometry (1964).

    Google Scholar 

  3. W. Browder, Algebraic K-theory with coefficients Z/p, Lecture Notes in Math. No. 657, Springer—Verlag, 1978.

    Google Scholar 

  4. J. Milnor and J. Stasheff, Characteristic classes, Annals of Math Study 76, Princeton Univ. Press, 1974.

    Google Scholar 

  5. W. Dwyer and E. Friedlander, Algebraic and Etale K-theory, Trans. AMS 292 (1985), 247 - 280.

    MathSciNet  MATH  Google Scholar 

  6. W. Dwyer, E. Friedlander and S. Mitchell, The generalized Burnside ring and the K-theory of a ring with roots of unity, K-theory 6 (1992), 285 - 300.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Grothendieck, Classes de Chern et représentations linéaires des groupes discretes, in Dix exposés sur le cohomologie des schémas, Masson and North—Holland, 1968.

    Google Scholar 

  8. O. Gabber, K-theory of henselian local rings and henselian pairs, AMS Contemp. Math. 126 (1992), 59 - 70.

    Google Scholar 

  9. H. Gillet, Riemann—Roch theorems for higher algebraic K-theory, Advances Math. 40 (1981), 203 - 289.

    Google Scholar 

  10. B. Harris and G. Segal, K1 groups of rings of algebraic integers, Annals of Math. 101 (1975), 20 - 33.

    Article  MATH  Google Scholar 

  11. K. Igusa, What happens to Hatcher and Wagoner’s formula for rsC(M) when the first Postnikov invariant of M is nontrivial, Lecture Notes in Math. No. 1046, Springer-Verlag, 1984.

    Google Scholar 

  12. M. Kolster, On torsion in K2 of fields, J. Pure Appl. Alg. 74 (1991), 257 - 273.

    Google Scholar 

  13. M. Levine, The indecomposable K3 of fields, Ann. scient. Ec. Norm. Sup. (Paris) t. 22 (1989), 255 - 344.

    Google Scholar 

  14. S. Lichtenbaum, On the values of zeta and L-functions: I, Annals Math. 96 (1972), 338-360. [Milne] J. Milne, Étale Cohomology, Princeton Univ. Press, Princeton, 1980.

    Google Scholar 

  15. A. Merkurjev and A. Suslin, The group K3 for a field, Izv. Akad. Nauk CCCP 54 (1990); (= Math. USSR Izvestiya 36 (1991), 541 - 565 ).

    Article  MathSciNet  Google Scholar 

  16. A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk CCCP 46 (1982); (= Math. USSR Izvestiya 21 (1983), 307 - 340 ).

    Article  Google Scholar 

  17. J. Neisendorfer, Primary homotopy theory, Memoirs AMS 232 (1980).

    Google Scholar 

  18. C. Pedrini and C. Weibel, Invariants of real curves,Rendiconte Mat. Sem. Torino (to appear).

    Google Scholar 

  19. D. Quillen, Letter from Quillen to Milnor on Im(riO J r7 — K;9G), Lecture Notes in Math. No.551, Springer—Verlag, 1976.

    Google Scholar 

  20. A. Grothendieck, Classes de Faisceaux et Théorème de Riemann-Roch, (SGA6, exposé 0), Lecture Notes in Math. No. 225, Springer—Verlag, 1971.

    Google Scholar 

  21. L. Roberts and C. Weibel, K2 and K3 of the circle, J. Pure Applied Algebra 23 (1982), 67 - 95.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251 - 295.

    MATH  Google Scholar 

  23. C. Soulé, Groupes de Chow et K-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), 317 - 345.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. No. 5, Springer—Verlag, 1964.

    Google Scholar 

  25. V. Shekhtman, Algebraic K-theory and characteristic classes, Uspekhi Mat. Nauk 33 (1978), 239-240; (= Russian Math. Surveys 33 (1978), 259 - 260 ).

    Article  MATH  Google Scholar 

  26. A. Suslin, Torsion in K2 fields, K-theory 1 (1987), 5 - 29.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Tate, Duality Theorems in Galois Cohomology over number fields, Proc. 1962 Intern. Congress Math., Stockholm, 1963, pp. 288 - 295.

    Google Scholar 

  28. J. Tate, Letter from Tate to Iwasawa on a relation between K2 and Galois cohomology, Lecture Notes in Math. No. 342, Springer—Verlag, 1973.

    Google Scholar 

  29. C. Weibel, Mayer- Vietoris sequences and mod p K-theory, Lecture Notes in Math. No. 966, Springer—Verlag, 1983.

    Google Scholar 

  30. A.Wiles, The Iwasawa conjecture for totally real fields,Annals Math. 131 (1990), 493-540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weibel, C. (1993). Étale Chern Classes at the Prime 2. In: Goerss, P.G., Jardine, J.F. (eds) Algebraic K-Theory and Algebraic Topology. NATO ASI Series, vol 407. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0695-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0695-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4302-3

  • Online ISBN: 978-94-017-0695-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics