Skip to main content
Log in

Key-exchange in real quadratic congruence function fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show how the theory of real quadratic congruence function fields can be used to produce a secure key distribution protocol. The technique is similar to that advocated by Diffie and Hellman in 1976, but instead of making use of a group for its underlying structure, makes use of a structure which is “almost” a group. The method is an extension of the recent ideas of Scheidler, Buchmann and Williams, but, because it is implemented in these function fields, several of the difficulties with their protocol can be eliminated. A detailed description of the protocol is provided, together with a discussion of the algorithms needed to effect it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen, Dissertation, Universität des Saarlandes, Saarbrücken (1994).

    Google Scholar 

  2. G. B. Agnew, R. C. Mullin and S. A. Vanstone, An implementation of elliptic curve cryptosystems over % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf% gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaWgaaWcbaGa% aGOmamaaCaaameqabaGaaGymaiaaiwdacaaI1aaaaaWcbeaaaaa!4529!\[\mathbb{F}_{2^{155} } \], IEEE J. Selected Areas in Communications, Vol. 11 (1993) pp. 804–813.

    Google Scholar 

  3. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Zeitschr., Vol. 19 (1924) pp. 153–206.

    Google Scholar 

  4. H. Cohen, A Course in Computation Algebraic Number Theory, Springer, Berlin (1994).

    Google Scholar 

  5. H. Cohen and H. W. Lenstra, Heuristics on class groups, in Number Theory (H. Jager, ed.) (Noordwijkerhout, 1983), Lecture Notes in Mathematics, Springer, New York, 1052 (1984) pp. 26–36.

    Google Scholar 

  6. H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in Number Theory (H. Jager, ed.) (Noordwijkerhout, 1983), Lecture Notes in Mathematics, Springer, New York, 1068 (1984) pp. 33–62.

    Google Scholar 

  7. M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics, Berlin 314 (1973).

  8. W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, Vol. 22, No. 6, (1976) pp. 644–654.

    Google Scholar 

  9. M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, New York (1966).

    Google Scholar 

  10. E. Friedman and L. C. Washington, On the distribution of divisor class groups of curves over finite fields, Theorie des Nombres, Proc. Int. Number Theory Conf. Laval, 1987, Walter de Gruyter, Berlin and New York (1989) pp. 227–239.

    Google Scholar 

  11. H. W. Lenstra Jr., On the calculation of regulators and class numbers of quadratic fields, London Math. Soc. Lec. Note Ser., Vol. 56, (1982) pp. 123–150.

    Google Scholar 

  12. R. Scheidler, J. A. Buchmann and H. C. Williams, A key exchange protocol using real quadratic fields, J. Cryptology, Vol. 7, (1994) pp. 171–199.

    Google Scholar 

  13. F. K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p, Math. Zeitschr., Vol. 33 (1931) pp. 1–32.

    Google Scholar 

  14. R. J. Schoof, Quadratic fields and factorization, Computational Methods in Number Theory (H. W. Lenstra and R. Tijdemans, eds.), Math. Centrum Tracts, Part II, Amsterdam, 155 (1983) pp. 235–286.

  15. D. Shanks, The infrastructure of a real quadratic field and its applications, Proc. 1972 Number Theory Conf., Boulder, Colorado (1972) pp. 217–224.

  16. A. Stein, Baby step-Giant step-Verfahren in reell-quadratischen Kongruenzfunktionenkörpern mit Charakteristik ungleich 2, Diplomarbeit, Universität des Saarlandes, Saarbrücken (1992).

    Google Scholar 

  17. A. Stein, Equivalences between Elliptic Curves and Real Quadratic Congruence Function Fields, in preparation.

  18. A. Stein and H. G. Zimmer, An algorithm for determining the regulator and the fundamental unit of a hyperelliptic congruence function field, Proc. 1991 Int. Symp. on Symbolic and Algebraic Computation, Bonn, ACM Press, July 15–17 (1991) pp. 183–184.

    Google Scholar 

  19. B. Weis and H. G. Zimmer, Artin's Theorie der quadratischen Kongruenzfunktionenkörper und ihre Anwendung auf die Berechnung der Einheiten-und Klassengruppen, Mitt. Math. Ges. Hamburg, Sond., Vol. XII, No. 2 (1991) pp. 261–286.

    Google Scholar 

  20. E. Weiss, Algebraic Number Theory, McGraw-Hill, New York (1963).

    Google Scholar 

  21. X. Zhang, Ambiguous classes and 2-rank of class groups of quadratic function fields, J. of China University of Science and Technology, Vol. 17, No. 4, (1987) pp. 425–431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Gus Simmons

Research supported by NSERC of Canada Drant #A7649

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheidler, R., Stein, A. & Williams, H.C. Key-exchange in real quadratic congruence function fields. Des Codes Crypt 7, 153–174 (1996). https://doi.org/10.1007/BF00125081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125081

Keywords

Navigation