Skip to main content
Log in

Elementary abelian p-subgroups of algebraic groups

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(\mathbb{K}\) be an algebraically closed field and let G be a finite-dimensional algebraic group over \(\mathbb{K}\) which is nearly simple, i.e. the connected component of the identity G 0 is perfect, C G(G 0)=Z(G 0) and G 0/Z(G 0) is simple. We classify maximal elementary abelian p-subgroups of G which consist of semisimple elements, i.e. for all primes p ≠ char \(\mathbb{K}\).

Call a group quasisimple if it is perfect and is simple modulo the center. Call a subset of an algebraic group toral if it is in a torus; otherwise nontoral. For several quasisimple algebraic groups and p=2, we define complexity, and give local criteria for whether an elementary abelian 2-subgroup of G is toral.

For all primes, we analyze the nontoral examples, include a classification of all the maximal elementary abelian p-groups, many of the nonmaximal ones, discuss their normalizers and fusion (i.e. how conjugacy classes of the ambient algebraic group meet the subgroup). For some cases, we give a very detailed discussion, e.g. p=3 and G of type E 6, E 7 and E 8. We explain how the presence of spin up and spin down elements influences the structure of projectively elementary abelian 2-groups in Spin(2n, ℂ). Examples of an elementary abelian group which is nontoral in one algebraic group but toral in a larger one are noted.

Two subsets of a maximal torus are conjugate in G iff they are conjugate in the normalizer of the torus; this observation, with our discussion of the nontoral cases, gives a detailed guide to the possibilities for the embedding of an elementary abelian p-group in G. To give an application of our methods, we study extraspecial p-groups in E 8(\(\mathbb{K}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J. F., ‘Elementary abelian 2-groups in E 8(C)’, preprint (1986).

  2. Alekseevskii, A. V., ‘Finite commutative Jordan subgroups of complex simple Lie groups’, Functional Anal. Appl. 8 (1974), 277–279.

    Google Scholar 

  3. Borel, A., ‘Sous groupes commutatifs et torsion des groupes de Lie compacts connexes’, Tohoku Math. J. (2) 13 (1961), 216–240.

    Google Scholar 

  4. Borel, A., et al., ‘Seminar on algebraic groups and related finite groups’, Lecture Notes in Math. 131, Springer Verlag, Berlin, 1970.

    Google Scholar 

  5. Borel, A. and Serre, J. P., ‘Sur certains sous groupes des groupes de Lie compacts’, Comment. Math. Helv. 27 (1953), 128–139.

    Google Scholar 

  6. Borel, A. and Mostow, G. D., ‘On semisimple automorphisms of Lie algebras’, Ann. Math. (2) 61 (1955), 389–405.

    Google Scholar 

  7. Chevalley, C., The Algebraic Theory of Spinors, Columbia Univ. Press, Morningside Heights, 1954.

    Google Scholar 

  8. Cohen, A. M. and Griess, R., Jr, ‘On finite simple subgroups of the complex Lie group of type E 8’, Proc. Symp. Pure Math. 47 (1987), 367–405.

    Google Scholar 

  9. Cohen, A. M., Liebeck, M., Saxl, J. and Seitz, G., ‘The local maximal subgroups of the exceptional groups of Lie type’, preprint.

  10. Cohen, A. M. and Wales, D., ‘Finite subgroups of F 4(ℂ) and E 6(ℂ)’, preprint.

  11. Curran, P., ‘Fixed point free action on a class of abelian groups’, Proc. Amer. Math. Soc. 57 (1976), 189–193.

    Google Scholar 

  12. de Siebenthal, J., ‘Sur les groupes de Lie compacts non connexes’, Comment. Math. Helv. 31 (1956), 41–89.

    Google Scholar 

  13. Gagola, S. and Garrison, S., ‘Real characters, double covers and the multiplier’, J. Algebra.

  14. Gantmacher, F., Rec. Math. Moscou N.S. 5 (1939), 101–144.

    Google Scholar 

  15. Gorenstein, D., Finite Groupes, Harper & Row, New York, 1968.

    Google Scholar 

  16. Gorenstein, D. and Lyons, R., ‘The local structure of finite groups of characteristic two type’, Mem. Amer. Math. Soc. 42 (1983).

  17. Griess, R. L. Jr, ‘Splitting of extensions of SL(3, 3) by the vector space \(\mathbb{F}_{\text{3}}^3 \), Pacific J. Math. 63 (1976), 405–409.

    Google Scholar 

  18. Griess, R. L. Jr, ‘Quotients of infinite reflection groupes’, Math. Annal. 263 (1983), 268–278.

    Google Scholar 

  19. Griess, R. L. Jr, ‘Sporadic groups, code loops and nonvanishing cohomology’, J. Pure Appl. Algebra 44 (1987), 191–214.

    Google Scholar 

  20. Griess, R. L. Jr, ‘A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables’ (submitted to J. Algebra).

  21. Griess, R. L. Jr, ‘Code loops and a large finite group containing triality for D 4’, from Atti Conv. Inter. Teoria Geom. Combin. Firenze, 23-22 Ottobre, 1986; Supplemento as Rend. Circ. Mat. Palermo, 79–98.

  22. Griess, R. L. Jr, ‘The Friendly Giant’, Invent. Math. 69 (1982), 1–102.

    Google Scholar 

  23. Gruenberg, K., Cohomological Topics in Group Theory, Springer, Berlin, 1970.

    Google Scholar 

  24. Humphreys, J., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972.

    Google Scholar 

  25. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1968.

    Google Scholar 

  26. Kac, V. G., Infinite Dimensional Lie Algebras (2nd edn), Cambridge Univ. Press, Cambridge, 1985.

    Google Scholar 

  27. Kleidman, P., Meierfrankenfeld, U. and Ryba, A., ‘The Rudvalis group is in E 7(7)’, in preparation.

  28. Lyons, R., ‘Evidence for a new finite simple group’, J. Algebra 20 (1972), 540–569.

    Google Scholar 

  29. McLaughlin, J. E., personal communication, 1975.

  30. MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

    Google Scholar 

  31. Moody R. and Patera, J., ‘Characters of elements of finite order in Lie groups’, SIAM J. Algebra Discrete Methods 5 (1984), 359–383.

    Google Scholar 

  32. Robinson, D., ‘The vanishing of certain homology and cohomology groups’, J. Pure Appl. Algebra 7 (1976), 145–167.

    Google Scholar 

  33. Sah, C.-H., ‘Cohomology of split group extensions’, J. Algebra 29 (1974), 255–302.

    Google Scholar 

  34. Schur, I., ‘Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen’, J. Reine Angew. Math. 127 (1904), 20–50.

    Google Scholar 

  35. Schur, I., ‘Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen’, J. Reine Angew. Math. 132 (1907), 85–107.

    Google Scholar 

  36. Schur, I., ‘Über die Darstellung der symmetrischen und alternienden Gruppen durch gebrochene lineare Substitutionen’, J. Reine Angew. Math. 139 (1911), 155–250.

    Google Scholar 

  37. Springer, T. and Steinberg, R., ‘Conjugacy Classes’, Section E of [Bo2].

  38. Steinberg, R., ‘Generators, relations and coverings of algebraic groups’, J. Algebra II 71 (1981), 521–543.

    Google Scholar 

  39. Wood, J. A., ‘Spinor groups and algebraic coding theory’, J. Combin. Theory (1989), 277–313.

  40. Young, K. C., ‘Some simple subgroups of the Tits simple group, 72T-B263’, Notices Amer. Math. Soc. (1972).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Jacques Tits for his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griess, R.L. Elementary abelian p-subgroups of algebraic groups. Geom Dedicata 39, 253–305 (1991). https://doi.org/10.1007/BF00150757

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00150757

Keywords

Navigation