Skip to main content
Log in

A disease transmission model in a nonconstant population

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A general SIRS disease transmission model is formulated under assumptions that the size of the population varies, the incidence rate is nonlinear, and the recovered (removed) class may also be directly reinfected. For a class of incidence functions it is shown that the model has no periodic solutions. By contrast, for a particular incidence function, a combination of analytical and numerical techniques are used to show that (for some parameters) periodic solutions can arise through homoclinic loops or saddle connections and disappear through Hopf bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Busenberg, S., van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–270 (1990)

    Google Scholar 

  • Busenberg, S., van den Driessche, P. Nonexistence of periodic solutions for a class of epidemiological models. In: Busenberg, S., Martelli, M. (eds.) Biology, Epidemiology, and Ecology. (Lect. Notes Biomath., vol. 92, pp. 70–79) Berlin Heidelberg New York: Springer 1991

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A., Liu, W. M.: Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989)

    Google Scholar 

  • Diekmann, O., Kretzschmar,M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991)

    MathSciNet  MATH  Google Scholar 

  • Doedel, E.: AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. California Institute of Technology (1986)

  • Ermentrout, B.: PhasePlane: The Dynamical System's Tool, Version 3.0. Pacific Grove, CA: Brooks/Cole 1990

    Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  • Hahn, W.: Stability of Motion. Berlin Heidelberg New York: Springer 1967

    Google Scholar 

  • Hethcote, H. W., Levin S. A.: Periodicity in epidemiological models. In: Levin, S. A., Hallam, T. G., Gross, L. J. (eds.) Applied Mathematical Ecology. (Biomath., vol. 18). Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  • Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modelling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119–199 (1988)

    Google Scholar 

  • Liu, W.-M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Google Scholar 

  • Liu, W.-M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    Google Scholar 

  • Mena-Lorca, J., Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population size. J. Math. Biol. 30, 693–716 (1992)

    Google Scholar 

  • Nold, A.: Heterogeneity in disease-transmission modeling. Math. Biosci. 52, 227–240 (1980)

    Google Scholar 

  • Revelle, C., Lynn, W. R., Feldmann, F.: Mathematical models for the economic allocation of tuberculosis control activities in developing nations. Am. Rev. Respir. Dis. 96, 893–909 (1967)

    Google Scholar 

  • Tudor, D.: A deterministic model for herpes infections in human and animal populations. SIAM Rev. 32, 136–139 (1990)

    Google Scholar 

  • Westphal, H.: Zur Abschätzung der Lösungen nichlinearer parabolischer Differentialgleichungen. Math. Z. 51, 690–695 (1947/49)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSERC grant A-8965, the University of Victoria Committee on Faculty Research & Travel, and the Institute for Mathematics and its Applications, Minneapolis, MN, with funds provided by NSF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrick, W.R., van den Driessche, P. A disease transmission model in a nonconstant population. J. Math. Biol. 31, 495–512 (1993). https://doi.org/10.1007/BF00173889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173889

Key words

Navigation