Skip to main content
Log in

Generation of exceptional groups of Lie-type

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we prove two theorems concerning the generation of a finite exceptional group of Lie-type G F. The first is: there is a semisimple element s such that for ‘nearly all’ elements xG Fthe elements s and x generate the group G F. The second theorem we prove is: if G is a finite simple exceptional group of Lie-type not of type E 6 or 2 E 6, then it is generated by three involutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M., ‘Finite groups generated by odd transpositions I, II, III, IV’, Math. Z. 127 (1972), 46–56; J. Algebra 26 (1973), 451–459, 460–478, 479–491.

    Google Scholar 

  2. Aschbacher, M., ‘Chevalley groups of type G 2 as the group of a trilinear form’, J. Algebra 109 (1987), 193–259.

    Google Scholar 

  3. Aschbacher, M., ‘The maximal subgroups of E 6’ (to appear).

  4. Carter, R. W., Simple Groups of Lie-type, Wiley, 1972.

  5. Carter, R. W., ‘Conjugacy classes in the Weyl group’, Comp. Math. 25 (1972), 1–59.

    Google Scholar 

  6. Cline, E., Parshall, B. and Scott, L., ‘Cohomology of finite groups of Lie-type II’, J. Algebra 45 (1977), 182–198.

    Google Scholar 

  7. Cohen, A. M. and Cooperstein, B., ‘The 2-spaces of the standard E 6(q)-module’, Geom. Dedicata 25 (1988), 467–480.

    Google Scholar 

  8. Cohen, A. M., Liebeck, M. W., Saxl, J. and Seitz, G. M., ‘The local maximal subgroups of the finite groups of Lie-type’ (preprint).

  9. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarenden Press, Oxford, 1985.

    Google Scholar 

  10. Cooperstein, B., ‘Maximal subgroups of G 2(2n)’, J. Algebra 70 (1981), 23–36.

    Google Scholar 

  11. Cooperstein, B., ‘The geometry of root subgroups in exceptional groups I’, Geom. Dedicata 8 (1979), 317–381.

    Google Scholar 

  12. Dalla Volta, F., ‘Gruppi sporadici generati da tre involutioni’, RILS A119 (1984), 65–87.

    Google Scholar 

  13. Dalla Volta, F. and Tamburini, M. C., ‘Generation of some orthogonal group by a set of 3 involutions’ (preprint).

  14. Dalla Volta, F. and Tamburini, M. C., ‘Generatione di PSp(4, q) mediante tre involutioni’ (preprint).

  15. Deriziotis, D. I., ‘The centralizers of semisimple elements of the Chevalley groups E 7 and E 8’, Tokyo J. Math. 6 (1983), 191–216.

    Google Scholar 

  16. Deriziotis, D. I. and Liebeck, M. W., ‘Centralizers of semisimple elements in finite twisted groups of Lie-type’, J. London Math. Soc. 31 (1985), 48–54.

    Google Scholar 

  17. Hering, Ch., ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order II’, J. Algebra 93 (1985), 151–164.

    Google Scholar 

  18. Kantor, W., Classical Groups from a Non-Classical Viewpoint, Oxford, 1979.

  19. Kantor, W. and Lubotzky, A., ‘The probability of generating a finite classical group’, Geom. Dedicata 36 (1990), 67–88.

    Google Scholar 

  20. Kleidman, P., ‘The maximal subgroups of the finite Steinberg triality groups 3 D 4(q) and their automorphism groups’, J. Algebra 115 (1988), 182–199.

    Google Scholar 

  21. Kleidman, P., ‘The maximal subgroups of the Chevalley groups G 2(q) with q odd, the Ree groups 2 G 2(q), and their automorphism groups’, J. Algebra 117 (1988), 30–71.

    Google Scholar 

  22. Landazuri, V. and Seitz, G. M., ‘On the minimal degrees of projective representations of the finite Chevalley groups’, J. Algebra 32 (1974), 418–443.

    Google Scholar 

  23. Levchuck, V. M. and Nuzhin, Y. N., ‘Structure of Ree groups’, Algebra Logika 24 (1985), 26–41.

    Google Scholar 

  24. Liebeck, M. W. and Saxl, J., ‘Primitive permutation groups containing an element of large prime order’, J. London Math. Soc. (2), 31 (1985), 426–446.

    Google Scholar 

  25. Liebeck, M. W. and Saxl, J., ‘On the order of maximal subgroups of the finite exceptional groups of Lie-type’, Proc. London Math. Soc. (3), 55 (1987), 299–330.

    Google Scholar 

  26. Malle, G., ‘Exceptional groups of Lie-type as Galois groups’, J. reine angew. Math. 392 (1988), 70–109.

    Google Scholar 

  27. Malle, G., ‘Hurwitz groups and G 2’, Canad. Math. Bull. 33 (3) (1990), 349–357.

    Google Scholar 

  28. Malle, G., ‘The maximal subgroups of 2 F 4(q 2)’ (to appear in J. Algebra).

  29. Norton, S. P. and Wilson, R. A., ‘The maximal subgroups of F 4(2) and its automorphism group’, Comm. Algebra 17 (11) (1989), 2809–2824.

    Google Scholar 

  30. Piper, F. C., ‘On elations of finite projective spaces of odd order’, J. London Math. Soc. 41 (1966), 641–648.

    Google Scholar 

  31. Piper, F. C., ‘On elations of finite projective spaces of even order’, J. London Math. Soc. 43 (1968), 456–464.

    Google Scholar 

  32. Seitz, G. M., ‘The root subgroups for maximal tori in finite groups of Lie-type’, Pacific J. Math. 106, No. 1 (1983), 153–244.

    Google Scholar 

  33. Suzuki, M., ‘On a class of doubly transitive groups’, Ann. Math. 75 (1962), 105–145.

    Google Scholar 

  34. Wagner, A., ‘Groups generated by elations’, Abh. Hamburg 41 (1974), 199–205.

    Google Scholar 

  35. Wagner, A., ‘The minimal number of involutions generating some finite three dimensional group’, Boll. Un. Tat. Ital. 15A (1978), 431–439.

    Google Scholar 

  36. Weigel, Th., ‘Residual properties of free groups, II’ (submitted).

  37. Weigel, Th., ‘Residual properties of free groups, III’ (preprint).

  38. Wong, P. and Seitz, G. M., ‘Groups with a (B, N)-pair of rank 2.I’, Invent. Math. 21 (1973), 1–57.

    Google Scholar 

  39. Zsigmondy, K., ‘Zur Theorie der Potenzreste’, Monatsh. Math. Phys. 3 (1892), 265–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author gratefully acknowledges financial support by the Deutsche Forschungs-gemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigel, T.S. Generation of exceptional groups of Lie-type. Geom Dedicata 41, 63–87 (1992). https://doi.org/10.1007/BF00181543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00181543

Keywords

Navigation