Skip to main content
Log in

Singularity formation in a collisionless plasma could occur only at high velocities

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The global existence problem is studied for regular solutions of the relativistic Vlasov-Maxwell equations. If it is assumed that the plasma density vanishes a priori for velocities near the speed of light, then regular solutions with arbitrary initial data exist in all of space and time. This assumption is either postulated for a solution or is arranged for all solutions through a modification of the equations themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsen'ev, A., “Global existence of a weak solution of Vlasov's system of equations,” U.S.S.R. Comp. Math. and Math. Phys. 15 (1975), 131–143.

    Google Scholar 

  2. Bardos, C., & Degond, P., “Global existence for the Vlasov-Poisson equation in three space variables with small initial data”, preprint.

  3. Batt, J., “Global symmetric solutions of the initial-value problem of stellar dynamics,” J. Diff. Eqns. 25 (1977), 342–364.

    Google Scholar 

  4. Batt, J., “The nonlinear Vlasov-Poisson system of partial differential equations in stellar dynamics,” Publications de L.U.E.R. Mathématiques Pures et Appliquées, Année 83, Vol. 5, Fasc. 2, 1–30 (Lille, 1983).

  5. Cooper, J., & Klimas, A., “Boundary value problems for the Vlasov-Maxwell equation in one dimension”, J. Math. Anal. Appl. 75 (1980), 306–329.

    Google Scholar 

  6. Duniec, J., “On an initial value problem for a nonlinear system of Viasov-Maxwell equations”. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 21 (1973), 97–102.

    Google Scholar 

  7. Glassey, R., & Schaeffer, J., “On symmetric solutions of the relativistic Vlasov-Poisson system”, preprint.

  8. Glassey, R., & Strauss, W., “Remarks on collisionless plasmas”, in Contemporary Mathematics, Vol. 28, 1984, 269–279.

    Google Scholar 

  9. Horst, E., “On the classical solutions of the initial value problem the unmodified nonlinear Vlasov equation”, Parts I and II. Math. Meth. in the Appl. Sci. 3 (1981), 229–248, and 4 (1982), 19–32.

    Google Scholar 

  10. Horst, E., & Hunze, R., “Weak solutions of the initial value problem for the unmodified nonlinear Vlasov-equation”, Math. Meth. in the Appl. Sci. 6 (1984), 262–279.

    Google Scholar 

  11. Iordanski, S., “The Cauchy problem for the kinetic equation of plasma”. Transl. (2) 35, Amer. Math. Soc. (1964), 351–363.

  12. Neunzert, H., & Petry, K. H., “Ein Existenzsatz für die Vlasov-Gleichung mit selbstkonsistentem Magnetfeld”, Math. Meth. in the Appl. Sci. 2 (1980), 429–444.

    Google Scholar 

  13. Ukai, S., & Okabe, T., “On classical solutions in the large in time of two-dimensional Vlasov's equation”, Osaka J. Math. 15 (1978), 245–261.

    Google Scholar 

  14. Van Kampen, N. G., & Felderhof, B. U., Theoretical Methods in Plasma Physics. North-Holland Publ. Co., Amsterdam, 1967 (p. 170).

    Google Scholar 

  15. Weibel, E., “L'équation de Vlasov dans la théorie spéciale de la relativité,” Plasma Phys. 9 (1967), 665–670.

    Google Scholar 

  16. Wollman, S., “The spherically symmetric Vlasov-Poisson system”, J. Diff. Eqns. 35 (1980), 30–35.

    Google Scholar 

  17. Wollman, S., “Global-in-time solutions of the two-dimensional Vlasov-Poisson system”, Comm. Pure Appl. Math. 33 (1980), 173–197.

    Google Scholar 

  18. Wollman, S., “An existence and uniqueness theorem for the Vlasov-Maxwell system”. Comm. Pure Appl. Math. 37 (1984), 457–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassey, R.T., Strauss, W.A. Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rational Mech. Anal. 92, 59–90 (1986). https://doi.org/10.1007/BF00250732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250732

Keywords

Navigation