Skip to main content
Log in

Sobolev spaces on an arbitrary metric space

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We define Sobolev space W 1,p for 1<p≤∞ on an arbitrary metric space with finite diameter and equipped with finite, positive Borel measure. In the Euclidean case it coincides with standard Sobolev space. Several classical imbedding theorems are special cases of general results which hold in the metric case. We apply our results to weighted Sobolev space with Muckenhoupt weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AcerbiE. and FuscoN.: ‘Semicontinuity problems in the calculus of variations’, Arch. Rational Mech. Anal. 86 (1984), 125–145.

    Google Scholar 

  2. BanachS. and SaksS.: ‘Sur la convergence forte dans le champ LP’, Studia Math. 2 (1930), 51–57.

    Google Scholar 

  3. BethuelF.: ‘The approximation problem for Sobolev maps between two manifolds’, Acta Math. 167 (1991), 153–206.

    Google Scholar 

  4. Bojarski, B.: ‘Remarks on some geometric properties of Sobolev mappings’, in Functional Analysis & Related Topics, ed. Shozo Koshi, World Scientific, 1991.

  5. BojarskiB. and HajłaszP.: ‘Pointwise inequalities for Sobolev functions and some applications’, Studia Math. 106 (1993), 77–92.

    Google Scholar 

  6. Bojarski, B. and Hajłasz, P.: Second part of [5] (in preparation).

  7. CalderónA.P.: ‘Estimates for singular integral operators in terms of maximal functions’, Studia Math. 44 (1972), 563–582.

    Google Scholar 

  8. CalderónA.P. and ZygmundA.: ‘Local properties of solutions of elliptic partial differential equations’, Studia Math. 20 (1961), 171–225.

    Google Scholar 

  9. ChiarenzaF. and FrascaM.: ‘A note on weighted Sobolev inequality’, Proc. Amer. Math. Soc. 93 (1985), 703–704.

    Google Scholar 

  10. EkelandI. and TemamR.: Convex Analysis and Variational Problems, North Holland, Amsterdam 1976.

    Google Scholar 

  11. FabesE., KenigC. and SerapioniR.: ‘The local regularity of solutions of degenerate elliptic equations’, Comm. Partial Diff. Equations 7 (1982), 77–116.

    Google Scholar 

  12. Federer, H.: Geometric Measure Theory, Springer-Verlag, 1969.

  13. Garcia-Cuerva, J. and Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, Mathematics Studies 116, Elsevier Science Publishers B.V., 1985.

  14. GiaquintaM., ModicaM. and SoučekJ.: ‘Cartesian currents and variational problems for mappings into spheres’, Ann. Scuola Norm. Sup. Pisa 16 (1989), 393–485.

    Google Scholar 

  15. Gilbarg, D. and Trudinger, N.: Elliptic Partial Differential Equetions of Second Order, Springer-Verlag, 1983.

  16. HajłaszP.: ‘Change of variables formula under minimal assumptions’, Colloq. Math. 64 (1993), 93–101.

    Google Scholar 

  17. Hajłasz, P.: ‘Co-area formula, Sobolev mappings and related topics’ (in preparation).

  18. Hajłasz, P.: Geometric Theory of Sobolev Mappings, Notes From Lectures at ENS de Cachan (manuscript), 1992.

  19. HajłaszP.: ‘Equivalent statement of the Poincaré conjecture’, Ann. Mat. Pura Appl. 167 (1994), 25–31.

    Google Scholar 

  20. HajłaszP.: ‘Boundary behaviour of Sobolev mappings’, Proc. Amer. Math. Soc. 123 (1995), 1145–1148.

    Google Scholar 

  21. HardtR. and LinF.H.: ‘Mappings minimizing the L p norm of the gradient’, Comm. Pure Appl. Math 40 (1987), 556–588.

    Google Scholar 

  22. HedbergL.: ‘On certain convolution inequalities’, Proc. Amer. Math. Soc. 36 (1972), 505–510.

    Google Scholar 

  23. Heinonen, J., Kilpeläinen, T. and Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press 1993.

  24. JohnF. and NirenbergL.: ‘On functions of bounded mean oscillation’, Comm. Pure Appl. Math., 14 (1961), 415–426.

    Google Scholar 

  25. Jonsson, A. and Wallin, H.: Function Spaces on Subsets ofn, Harwood Acad. Publ., 1984.

  26. LewisJ.L.: ‘On very weak solutions of certain elliptic systems’, Comm. Partial Diff. Equations 18 (1993), 1515–1537.

    Google Scholar 

  27. LiuF.C.: ‘A Lusin type property of Sobolev functions’, Indiana Univ. Math. Journ. 26 (1977), 645–651.

    Google Scholar 

  28. MalýJ.: ‘L p approximation of Jacobians’, Comment. Math. Univ. Carolinae 32 (1991), 659–666.

    Google Scholar 

  29. Maz'ya, V.: Sobolev Spaces, Springer-Verlag, 1985.

  30. MichaelJ and ZiemerW., ‘A Lusin type approximation of Sobolev functions by smooth functions’, Contemp. Math. 42 (1985), 135–167.

    Google Scholar 

  31. Morgan, F.: Geometric Measure Theory, Acad. Press, 1988.

  32. Schoen, R. and Uhlenbeck, K.: ‘Approximation theorems for Sobolev mappings’, (preprint).

  33. Simon, L.: Lectures on Geometric Measure Theory, Proc. of Centre for Math. Anal. Austral. Nat. Univ. Vol. 3, 1983.

  34. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis, Acad. Press, 1986.

  35. TrudingerN.S.: ‘On imbedding into Orlicz spaces and some applications’, J. Math. Mech. 17 (1961), 473–484.

    Google Scholar 

  36. WhiteB.: ‘Homotopy classes in Sobolev spaces and the existence of energy minimizing maps’, Acta Math. 160 (1988), 1–17.

    Google Scholar 

  37. WhitneyH.: ‘On totally differentiable and smooth functions’, Pac. Journ. Math. 1 (1951), 143–159.

    Google Scholar 

  38. ZiemerW.: ‘Uniform differentiability of Sobolev functions’, Indiana Univ. Math. Journ. 37 (1988), 789–799.

    Google Scholar 

  39. Ziemer, W.: Weakly Differentiable Functions, Springer-Verlag, 1989.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by KBN grant no. 2 1057 91 01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajłasz, P. Sobolev spaces on an arbitrary metric space. Potential Anal 5, 403–415 (1996). https://doi.org/10.1007/BF00275475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275475

Mathematics Subject Classifications (1991)

Key words

Navigation