Skip to main content
Log in

Bifurcation for non-differentiable operators with an application to elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider operator equations of the form

$$\left( {A_0 - \lambda _0 B_0 } \right)u = N\left( {\lambda ,u} \right)$$

, (1) where A 0, B 0 are linear operators between real Banach spaces and N(λ, u) is a nonlinear operator with the property that N(λ, 0)=0 for all real λ. Assuming that λ 0, a specific value of λ, is an isolated eigenvalue of A 0λB 0 of multiplicity m, we study the phenomenon of bifurcation for equation (1), where it is merely assumed that N(λ, u) is Lipschitz continuous in u near u=0 with a small Lipschitz constant. It is shown that when (1) has a variational structure, for each suitable normalization of u, two non-zero solutions (λ, u) occur near (λ0,0) (m pairs occur if N is odd in u). Further results concern the existence of branches of solutions when m is odd and the asymptotic behavior of solutions in terms of the size of the Lipschitz constant. The motivation for the study and the main application of the results concerns buckling of a von Kármán plate resting on a foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann, H., Lusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann. 199 (1972), 55–72.

    Google Scholar 

  2. Berger, M.S., Bifurcation theory and the type numbers of Marston Morse, Proc. Nat. Acad. Sc. 69 (1972), 1737–1738.

    Google Scholar 

  3. Böhme, R., Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105–126.

    Google Scholar 

  4. Clark, D. C., Eigenvalue bifurcation for odd gradient operators, Rocky Mountain J. Math. 5 (1975), 317–336.

    Google Scholar 

  5. Crandall, M.G., & Rabinowitz, P.H., Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321–340.

    Google Scholar 

  6. Dancer, E. N., Global solution branches for positive mappings, Arch. Rational Mech. Analysis 52 (1973), 181–192.

    Google Scholar 

  7. Ize, G.A., Bifurcation theory for Fredholm operators, Thesis, New York Univ., 1974.

  8. Kirchgässner, K., Multiple eigenvalue bifurcation for holomorphic mappings, Contributions to Nonlinear Functional Analysis, E.H. Zarantonello (edit.), Academic Press, New York, 1971.

    Google Scholar 

  9. Krasnoselski, M.A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.

    Google Scholar 

  10. Krasnoselski, M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

    Google Scholar 

  11. MacBain, J., Global bifurcation theorems for non-compact operators, Bull. Amer. Math. Soc. 80 (1974), 1005–1009.

    Google Scholar 

  12. McLeod, J.B., & Sattinger, D.H., Loss of stability and bifurcation at a double eigenvalue, J. Funct. Anal. 14 (1973), 62–84.

    Google Scholar 

  13. Marino, A., & Prodi, G., La teoria di Morse per gli spazi di Hilbert, Rend. Sem. Mat. Univ. Padova 41 (1968), 43–68.

    Google Scholar 

  14. Marino, A., La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari (1973), 132.

  15. Nussbaum, R., A global bifurcation theorem with applications to functional differential equations, preprint.

  16. Rabinowitz, P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.

    Google Scholar 

  17. Rabinowitz, P. H., Variational methods for nonlinear eigenvalue problems, Eigenvalues of Nonlinear Problems, C.I.M.E., Varenna, Italy, 1974.

    Google Scholar 

  18. Rabinowitz, P.H., A bifurcation theorem for potential operators, in progress.

  19. Reeken, M., Stability of critical points under small perturbations, Part I: Topological theory, Manuscripta Math. 7 (1972), 387–411; Part II: Analytic theory, ibid. 8 (1973), 69–92.

    Google Scholar 

  20. Sather, D., Branching of solutions of nonlinear equations, Rocky Mountain J. Math. 3 (1973), 203–250.

    Google Scholar 

  21. Stuart, C.A., Some bifurcation theory for k-set contractions, Proc. London Math. Soc. (3) 27 (1973), 531–550.

    Google Scholar 

  22. Turner, R.E.L., Transversality in nonlinear eigenvalue problems, Contributions to Nonlinear Functional Analysis, E.H. Zarantonello (edit.), Academic Press, New York, 1971.

    Google Scholar 

  23. Turner, R.E.L., Transversality and cone maps, Arch. Rational Mech. Analysis 58 (1975), 151–179.

    Google Scholar 

  24. Vainberg, M.M., & Trenogin, V.A., The methods of Lyapunov and Schmidt in the theory of nonlinear equations and their further development, Russ. Math. Surveys 17 (1962), 1–60.

    Google Scholar 

  25. Schwartz, J.T., Nonlinear Functional Analysis, Lecture Notes, New York University, New York, 1965.

    Google Scholar 

  26. Schaefer, H.H., Topological Vector Spaces, Macmillan, New York, 1966.

    Google Scholar 

  27. Dunford, N., & Schwartz, J.T., Linear Operators, Vol. I: General theory, Interscience, New York, 1958.

    Google Scholar 

  28. Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco, 1964.

    Google Scholar 

  29. Birnbaum, S., Spectral theory for a pair of closed linear transformations acting between two Banach spaces, Report No. SR 0520-99, Martin Co., 1965.

  30. Turner, R.E.L., Eigenfunction expansions in Banach spaces, Quart. J. Math. (2) 19 (1968), 193–211.

    Google Scholar 

  31. Palais, R.S., Critical point theory and the minimax principle, Proc. Symp. Pure Math. 15, A.M.S., Providence, 1970, 185–212.

  32. Coffman, C.V., A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math. 22 (1969), 391–419.

    Google Scholar 

  33. Turner, R.E.L., Nonlinear eigenvalue problems with applications to elliptic equations, Arch. Rational Mech. Analysis 42 (1971), 184–193.

    Google Scholar 

  34. Berger, M.S., & Fife, P.C., On von Kármán's equations and the buckling of a thin elastic plate, Bull Amer. Math. Soc. 72 (1966), 1006–1011.

    Google Scholar 

  35. Berger, M.S., On von Kármán's equations and the buckling of a thin elastic plate, I: The clamped plate, Comm. Pure Appl. Math. 20 (1967), 687–719.

    Google Scholar 

  36. Berger, M.S., & Fife, P.C., Von Kármán's equations and the buckling of a thin elastic plate, II: Plate with general edge conditions, Comm. Pure Appl. Math. 21 (1968), 227–241.

    Google Scholar 

  37. Friedrichs, K.O., & Stoker, J.J., The nonlinear boundary value problem of the buckled plate, Amer. J. Math. 63 (1941), 839–888.

    Google Scholar 

  38. Keller, H.B., Keller, J.B., & Reiss, E.L., Buckled states of circular plates, Quart. Appl. Math. 20 (1962), 55–65.

    Google Scholar 

  39. Morosov, N.F., On the nonlinear theory of thin plates, Dokl. Akad. Nauk SSSR 114 (1957), 968–971.

    Google Scholar 

  40. Rabinowitz, P.H., Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 729–754.

    Google Scholar 

  41. Steinberg, H., Buckling of a circular plate resting on an elastic foundation, Report No. TSR 1063, Mathematics Research Center, Madison, 1972.

    Google Scholar 

  42. Steinberg, H., Buckling of a circular plate embedded in a nonlinear elastic foundation, Report No. TSR 1064, Mathematics Research Center, Madison, 1971.

    Google Scholar 

  43. Stoker, J.J., Nonlinear Elasticity, Thomas Nelson and Sons, London, 1968.

    Google Scholar 

  44. Wolkowisky, J.H., Existence of buckled states of circular plates, Comm. Pure Appl. Math. 20 (1967), 549–560.

    Google Scholar 

  45. Wolkowisky, J.H., Buckling of the circular plate embedded in elastic springs. An application to geophysics, Comm. Pure Appl. Math. 22 (1969), 639–667.

    Google Scholar 

  46. Ladyzhenskaya, O.A., & Ural'tseva, N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.

    Google Scholar 

  47. Lions, J.L., & Magenes, E., Problèmes aux Limites non Homogènes et Applications, Vol. I, Dunod, Paris, 1968.

    Google Scholar 

  48. Sokolnikoff, I.S., Mathematical Theory of Elasticity (Second edition), McGraw-Hill, New York, 1956.

    Google Scholar 

  49. Agmon, S., Douglis, A., & Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623–727.

    Google Scholar 

  50. Friedrichs, K.O., Die Randwertund Eigenwertprobleme aus der Theorie der elastischen Platten. (Anwendung der direkten Methoden der Variationrechnung.), Math. Ann. 98 (1928), 205–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Note: This research was sponsored by the United Kingdom Science Research Council and the United States Army under Contract No. DAAG29-75-C-0024, and the National Science Foundation under Grant MPS 75-06556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLeod, J.B., Turner, R.E.L. Bifurcation for non-differentiable operators with an application to elasticity. Arch. Rational Mech. Anal. 63, 1–45 (1976). https://doi.org/10.1007/BF00280140

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00280140

Keywords

Navigation