Skip to main content
Log in

Block generalized inverses

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The existence of the Moore-Penrose inverse is discussed for elements of a *-regular ring R. A technique is developed for computing conditional and reflexive inverses for matrices in R2×2, which is then used to calculate the Moore-Penrose inverse for these matrices. Several applications are given, generalizing many of the classical results; in particular, we shall emphasize the cases of bordered matrices, Schur complements, block-rank formulae and EP elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer, C.D., Generalised inverses and ranks of block matrices, SIAM J. Appl. Math. 25, 597–602 (1973).

    Google Scholar 

  2. Rohde, C.A., Generalized inverses of partitioned matrices. SIAM J. Appl. Math. 13, 1033–1035 (1965).

    Google Scholar 

  3. Burns, F., D. Carlson, E. Haynsworth, & T. Markham, Generalized inverse formulas using the Schur-complement. SIAM J. Appl. Math. 26, 254–259 (1974).

    Google Scholar 

  4. Brown, B., & N.H. McCoy, The maximal regular ideal of a ring. Proc. Amer. Math. Soc. 1, 165–171 (1950).

    Google Scholar 

  5. Meyer, C.D., & R.J. Painter, Note on least square inverse for a matrix. J. Assoc. Comput. Math. 17, 110–112 (1970).

    Google Scholar 

  6. Meyer, C.D., Representations for (1) and (1, 2) inverses for partitioned matrices. Lin. Alg. Appl. 4, 221–232 (1971).

    Google Scholar 

  7. Drazin, M.P., Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly LXV, 506–514 (1958).

    Google Scholar 

  8. Prijatelj, N., & I. Vidav, On special *-regular rings. Michigan Math. J. 18, 213–221 (1971).

    Google Scholar 

  9. Rickart, C.E., Banach algebras with an adjoint operation. Ann. of Math. 47, 528–550 (1946).

    Google Scholar 

  10. Kaplansky, I., Any ortho-complemented complete modular lattice is a continuous geometry. Ann. of Math. (2), 61, 524–541 (1955).

    Google Scholar 

  11. Skornyakov, L.A., Complemented Modular Lattices and Regular Rings. London: Oliver & Boyd 1964.

    Google Scholar 

  12. Rao, C.R., & S.K. Mitra, Generalized Inverse of Matrices and its Applications. New York: John Wiley & Sons, Inc. 1971.

    Google Scholar 

  13. Greville, T.N.E., On the solution of the matrix equation xax=x. MCR Technical Summary Report # 1169, 1971.

  14. Fitzgerald, D.G., On inverses of products of idempotents in regular semigroups. Austral. J. Math. 13, 335–337 (1972).

    Google Scholar 

  15. Gillman, L., & M. Jerison, Rings of Continuous Functions, p. 16. Princeton: Van Nostrand 1960.

    Google Scholar 

  16. Hartwig, R.E., 1–2 inverses and the invariance of ba + c. Lin. Alg. Appl. 11, 271–275 (1975).

    Google Scholar 

  17. scvon Neumann, J., On regular rings. Proc. Nat. Acad. Sci. 22, 707–713 (1936).

    Google Scholar 

  18. Boullion, T.L., & P.L. Odell, Generalized Inverse Matrices. New York: Wiley Interscience 1971.

    Google Scholar 

  19. Penrose, R., A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406–413 (1958).

    Google Scholar 

  20. Pearl, M.H., Generalized inverses of matrices with entries taken from an arbitrary field. Lin. Alg. Appl. 1, 571–587 (1968).

    Google Scholar 

  21. Gabriel, R., g-Inverse of a matrix over arbitrary field, analytically-considered. J. Reine und Angew. Math. 244, 83–93 (1970).

    Google Scholar 

  22. Moore, E.H., General Analysis, Part 1. Mem. Amer. Philos. Soc. (1935).

  23. Zlobec, S., An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix. SIAM Rev. 12, 132–134 (1970).

    Google Scholar 

  24. Robert, P., On the group inverse of a linear transformation. J. Math. Anal. Appl. 22, 658–669 (1968).

    Google Scholar 

  25. Hartwig, R.E., Rank factorization and g-inversion, to be published, J. Industrial Math.

  26. Ayres, F., Theory and Problems of Matrices, p. 57. New York: McGraw-Hill 1962.

    Google Scholar 

  27. Carlson, D., E. Haynsworth, & T. Markham, A generalization of the Schur-complement by means of the Moore-Penrose inverse. SIAM J. Appl. Math. 26, 169–179 (1974).

    Google Scholar 

  28. Lewis, T.O., & T.G. Newmann, Pseudo-inverses of positive semi-definite matrices. SIAM J. Appl. Math. 16, 701–703 (1968).

    Google Scholar 

  29. McCoy, N.H., Rings and Ideals. Buffalo: Carus Monograph No. 8, 1948.

  30. scde Bruyn, N.G., Inequalities concerning minors and eigenvalues. Nieuw Arch. Wiskunde 3IV, 18–35 (1956).

    Google Scholar 

  31. Grandmacher, F.R., The Theory of Matrices, vol. 1. New York: Chelsea 1960.

    Google Scholar 

  32. Kaplansky, I., Elementary divisors and modules. Trans. A.M.S. 66, 464–491 (1949).

    Google Scholar 

  33. Hartwig, R.E., Singular values and g-inverses of bordered matrices, to be published, SIAM J. Appl. Math.

  34. Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudo inverses. SIAM, J. Appl. Math. 17, 434–440 (1969).

    Google Scholar 

  35. Cline, R.E., Representations for the generalized inverse of a partitioned matrix. SIAM J. Appl. Math. 12, 588–600 (1964).

    Google Scholar 

  36. Greville, T.N., Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966). Erratum, ibid 9, 249. Erratum, private communication.

    Google Scholar 

  37. Graybill, F.A., Introduction to Matrices with Applications in Statistics. Wadsworth: Belmont Cal., 1969.

    Google Scholar 

  38. de Polinac, C., Inverses generalisées de matrices bordées et de matrices peturbées, unpublished.

  39. Pringle, R.M., A.A. Rayner, Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models. SIAM. Rev. 12, 107–115 (1970).

    Google Scholar 

  40. Meyer, C.D., The Moore-Penrose inverse of a bordered matrix. Lin. Alg. Appl. 5, 375–382 (1972).

    Google Scholar 

  41. Arghiriade, E., Remarques sur l'inverse généralisée d'un produit de matrices. Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. 42, 621–625 (1967).

    Google Scholar 

  42. Schwerdtfeger, H., Introduction to Linear Algebra and the Theory of Matrices. Groningen: P. Noordhoff 1950.

    Google Scholar 

  43. Meyer, C.D., Some remarks on EPr matrices, and generalized inverses. Lin. Alg. Appl. 3, 275–278 (1970).

    Google Scholar 

  44. Baskett, T.S., & I.J. Katz, Theorems on products of EPr matrices. Lin. Alg. and Appl. 2, 87–103 (1969).

    Google Scholar 

  45. Katz, I.J., Remarks on two recent results in matrix theory. Lin. Alg. and Appl. 5, 109–112 (1972).

    Google Scholar 

  46. Berberian, S.K., The regular ring of a finite Baer *-ring. J. Alg. 23, 35–65 (1972).

    Google Scholar 

  47. Foulis, D.J., Relative inverses in Baer *-semigroups. Mich. Math. J. 10, 65–84 (1963).

    Google Scholar 

  48. McCoy, N.H., Generalized regular rings. Bull. Amer. Math. Soc. 45, 175–178 (1939).

    Google Scholar 

  49. Drazin, M.P., Proc. Edinb. Math. Soc. 9, 157–165 (1958).

    Google Scholar 

  50. Barnes, W.E., On the Γ-rings of Nobusawa. Pac. J. Math. 18, 411–422 (1966).

    Google Scholar 

  51. scBen Israel, A., & T.N. Greville, Generalized Inverses, Theory and Applications. New York: John Wiley & Sons, Inc., N.Y. 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Kac

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, R.E. Block generalized inverses. Arch. Rational Mech. Anal. 61, 197–251 (1976). https://doi.org/10.1007/BF00281485

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281485

Keywords

Navigation