Skip to main content
Log in

Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider an electrostatic problem for a conductor consisting of finitely many small inhomogeneities of extreme conductivity, embedded in a spatially varying reference medium. Firstly we establish an asymptotic formula for the voltage potential in terms of the reference voltage potential, the location of the inhomogeneities and their geometry. Secondly we use this representation formula to prove a Lipschitz-continuous dependence estimate for the corresponding inverse problem. This estimate bounds the difference in the location and in certain geometric properties of two sets of inhomogeneities by the difference in the boundary voltage potentials corresponding to a fixed current distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Alessandrini, An identification problem for an elliptic equation in two variables, Univ. of Florence, Technical Report, 1986.

  2. G. Alessandrini, Stable determination of conductivity by boundary measurements, IMA Tech. Report, 1987.

  3. N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations and inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249.

    Google Scholar 

  4. D. C. Barber & B. H. Brown, Recent developments in Applied Potential Tomography—APT. In Information Processing in Medical Imaging, ed. S. L. Bacharach, 106–121. Nijhoff 1986.

  5. H. Bellout & A. Friedman, Identification problem in potential theory, Archive Rational Mech. Anal., 101 (1988), 143–160.

    Google Scholar 

  6. Proceedings of the EEC workshop on electrical impedance imaging, Sheffield, England, 1986. B. H. Brown editor.

  7. H. O. Cordes, Über die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorhaben, Nachr. Akad. Wiss. Goettingen Math.-Phys. Kl. IIa (1956), 239–258.

  8. A. Friedman, Detection of mines by electric measurements, SIAM J. Appl. Math. 47 (1987), 201–212.

    Google Scholar 

  9. A. Friedman, & B. Gustafsson, Identification of the conductivity coefficient in an elliptic equation, SIAM J. Math. Anal., 18 (1987), 777–787.

    Google Scholar 

  10. D. G. Gisser, D. Isaacson & J. C. Newell, Electric current computet tomography and eigenvalues I, Preprint, 1987.

  11. R. E. Kleinman & T. B. A. Seniop, Rayleigh Scattering. Chap. 1 in, “Low and High Frequency Asymptotics”, V.K. Varadan and V. V. Varadan, Eds. Elsevier Science Publishers, 1986.

  12. R. Kohn & M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), 289–298.

    Google Scholar 

  13. R. Kohn & M. Vogelius, Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math. 38 (1985), 643–667.

    Google Scholar 

  14. R. Kohn & M. Vogelius, in preparation.

  15. I.-J. Lee, Determining conductivity by boundary measurements: some numerical results, Univ. of Maryland Tech. Report, 1988.

  16. N. G. Meyers & J. Serrin, The exterior Dirichlet problem for second order elliptic partial differential equations, J. Math. Mech. 9 (1960), 513–538.

    Google Scholar 

  17. K. Miller, Stabilized numerical analytic prolongation with poles, SIAM J. Appl. Math. 18 (1970), 346–363.

    Google Scholar 

  18. S. Ozawa, Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo, Sect. IA 30 (1983), pp. 259–277.

    Google Scholar 

  19. M. Schiffer & G. Szegö, Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949), pp. 130–205.

    Google Scholar 

  20. J. Sylvester & G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), 91–112.

    Google Scholar 

  21. J. Sylvester & G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Math. 125 (1987), 153–169.

    Google Scholar 

  22. J. Sylvester & G. Uhlmann, Inverse boundary value problems at the boundary —continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197–219.

    Google Scholar 

  23. A. Wexler, B. Fry & M. R. Neumann, Impedance-computed tomography algorithm and system, Appl. Optics 24 (1985), 3985–3992.

    Google Scholar 

  24. T. J. Yorkey, J. G. Webster & W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomedical Eng. BME-34 (1987), 843–852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Weinberger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A., Vogelius, M. Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Rational Mech. Anal. 105, 299–326 (1989). https://doi.org/10.1007/BF00281494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281494

Keywords

Navigation