Skip to main content
Log in

The qualitative dynamics of a class of biochemical control circuits

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

The dynamical behavior of a class of biochemical control circuits that regulate enzyme or protein synthesis by end-product feedback is analyzed. Both inducible and repressible systems are studied and it is proven that in the former unique steady states are globally asymptotically stable. This precludes periodic solutions in these systems. A similar result holds for repressible systems under certain constraints on kinetic parameters and binding contants. However, when the reaction sequence is sufficiently long, or when a large enough number of effector molecules bind to each represser molecule, repressible systems can show zero-amplitude (“soft”) bifurcations: these are predicted by Hopf's bifurcation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizerman, M. A., Gantmacher, F. R.: Absolute Stability of Regulator Systems. San Francisco: Holden-Day 1964.

    Google Scholar 

  2. Aronson, D. G.: A comparison method for stability analysis of nonlinear parabolic problems. Preprint (1975).

  3. Atkinson, D. E.: Biological feedback control at the molecular level. Science 150, 851–875 (1965).

    Google Scholar 

  4. Bourgeois, S., Monod, J.: Lac regulatory system, in: Control Processes in Multicellular Organisms (Wolstenholme, G., Knight, J., ed.) London: Churchill 1970.

    Google Scholar 

  5. Brauer, F., Nohel, J.: The Qualitative Theory of Ordinary Differential Equations. New York: Benjamin 1969.

    Google Scholar 

  6. Caplan, S. R., Naparstek, A., Zabusky, N. J.: Chemical oscillations in a membrane. Nature 245, 364–366 (1973).

    Google Scholar 

  7. Glass, L., Kauffman, S. A.: Co-operative components, spatial localization and oscillatory cellular dynamics. J. Theor. Biol. 34, 219–237 (1972).

    Google Scholar 

  8. Goodwin, B. C.: Oscillatory behavior in enzymatic control processes, in: Adv. in Enzyme Regulation, 3 (Weber, G., ed.). Oxford: Pergamon 1965.

  9. Goodwin, B. C.: Biological control processes and time. Ann. N. Y. Acad. Sci. 31, 748–758 (1969).

    Google Scholar 

  10. Griffith, J. S.: Mathematics of cellular control processes. J. Theor. Biol. 20, 202–216 (1968).

    Google Scholar 

  11. Hastings, S., Tyson, J., Webster, D.: Existence of periodic solutions for negative feedback control systems. Preprint (1975).

  12. Hsü, I., Kazarinoff, N. D.: An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. and Applic. (to appear, 1976).

  13. Hunding, A.: Limit cycles in enzyme systems with nonlinear negative feedback. Biophys. Struct. Mech. 1, 47–54 (1974).

    Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators. New York: Springer 1966.

    Google Scholar 

  15. Lee, E. B., Markus, L.: Foundations of Optimal Control Theory. New York: J. Wiley 1967.

    Google Scholar 

  16. Mitchison, J. M.: The Biology of the Cell Cycle. Cambridge: Cambridge Univ. Press 1971.

    Google Scholar 

  17. Morales, M., McKay, D.: Biochemical oscillations in “controlled” systems. Biophys. Jour. 7, 621–625 (1967).

    Google Scholar 

  18. Minc, H., Marcus, M.: A Survey of Matrix Theory and Matrix Inequalities. Boston: Prindle, Weber and Schmidt 1964.

    Google Scholar 

  19. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971).

    Google Scholar 

  20. Tomkins, G. M., Gelehrter, T. D., Granner, D., Martin, D., Samuels, H. H., Thompson, E. B.: Control of Specific Gene Expression in Higher Organisms. Science 166, 1474–1480 (1969).

    Google Scholar 

  21. Tyson, J. J.: On the existence of oscillatory solutions in negative feedback cellular control processes. J. Math. Biol. 1, 311–315 (1975).

    Google Scholar 

  22. Walter, C.: Stability of controlled biological systems. J. Theor. Biol. 23, 23–38 (1969).

    Google Scholar 

  23. Walter, C.: The absolute stability of certain types of controlled biological systems. J. Theor. Biol. 23, 39–52 (1969).

    Google Scholar 

  24. Walter, C.: Oscillations in controlled biochemical systems. Biophys. Jour. 9, 863–872 (1971).

    Google Scholar 

  25. Yagil, G., Yagil, E.: On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. Jour. 11, 11–27 (1971).

    Google Scholar 

  26. Yagil, G.: Quantitative aspects of protein induction, in: Curr. Top. Cell. Reg. 9 (Horecker, B. L., Stadtman, E. R., eds.). New York: Academic Press 1975.

    Google Scholar 

  27. Yates, R. A., Pardee, A.: Control of pyramidine biosynthesis in E. coli by a feedback mechanism. J. Biol. Chem. 221, 757–765 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Othmer, H.G. The qualitative dynamics of a class of biochemical control circuits. J. Math. Biology 3, 53–78 (1976). https://doi.org/10.1007/BF00307858

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307858

Keywords

Navigation