Skip to main content
Log in

Planar graphs and poset dimension

  • Published:
Order Aims and scope Submit manuscript

Abstract

We view the incidence relation of a graph G=(V. E) as an order relation on its vertices and edges, i.e. a<G b if and only of a is a vertex and b is an edge incident on a. This leads to the definition of the order-dimension of G as the minimum number of total orders on V ∪ E whose intersection is <G. Our main result is the characterization of planar graphs as the graphs whose order-dimension does not exceed three. Strong versions of several known properties of planar graphs are implied by this characterization. These properties include: each planar graph has arboricity at most three and each planar graph has a plane embedding whose edges are straight line segments. A nice feature of this embedding is that the coordinates of the vertices have a purely combinatorial meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Babai and D. Duffus (1981) Dimension and automorphism groups of lattices, Alg. Univ. 12, 279–289.

    Google Scholar 

  2. B. Dushnik (1950) Concerning a certain set of arrangements Proc. Amer. Math. Soc. 1, 788–796.

    Google Scholar 

  3. B. Dushnik and E. W. Miller (1941) Partially ordered sets, Amer. J. Math. 63, 600–610.

    Google Scholar 

  4. I. Fáry (1948) On straight line representation of planar graphs, Acta Sci. Math. Szeged 11, 229–233.

    Google Scholar 

  5. T. Gallai (1967) Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18, 25–66.

    Google Scholar 

  6. M. C. Golumbic (1977) The complexity of comparability graph recognition and coloring, Computing 18, 199–203.

    Google Scholar 

  7. R. Gysin (1977) Dimension transitiv orientierbarer Graphen, Acta Math. Acad. Sci. Hungar 29, 313–316.

    Google Scholar 

  8. T. Hiraguchi (1951) On the dimension of orders, Sci. Rep. Kanazawa Univ 1, 77–94.

    Google Scholar 

  9. G. R. Kampen (1976) Orienting planar graphs, Discrete Math. 14, 337–341.

    Google Scholar 

  10. D. Kelly (1977) The 3-irreducible partially ordered sets, Canad. J. Math. 29, 367–383.

    Google Scholar 

  11. H. Komm (1948) On the dimension of partially ordered sets, Amer. J. Math. 70, 507–520.

    Google Scholar 

  12. D. Kelly and W. T. TrotterJr. (1982) Dimension theory for ordered sets, in I. Rival (ed.), Ordered Sets, D. Reidel, Dordrecht, pp. 171–211.

    Google Scholar 

  13. C. St. J. A. Nash-Williams (1961) Edge disjoint trees of finite graphs, J. London Math. Soc. 36, 445–450.

    Google Scholar 

  14. J. Spencer (1971) Minimal acrambling sets of simple orders, Acta Math. Acad. Sci. Hungar. 22, 349–353.

    Google Scholar 

  15. V. Sedmak (1954) Quelques applications des ensembles ordonnés., Bull. Soc. Math. Phys. Serbie 6, 12–39, 131–153.

    Google Scholar 

  16. S. K. Stein (1951) Convex maps, Proc. Amer. Math. Soc. 2, 464–466.

    Google Scholar 

  17. E. Szpilrajn (1930) Sur l'extension de l'ordre partiel, Fund. Math. 16, 386–389.

    Google Scholar 

  18. W. T. TrotterJr. (1983) Graphs and Partially Ordered Sets, in L. Beineke (ed.), Graph Theory, Vol. 2, Academic Press, London, pp. 237–268.

    Google Scholar 

  19. W. T. Trotter Jr and J. I. Moore Jr. (1976) Characterization problems for graphs, partially ordered sets, lattices and families of sets, Discrete Math. 16, 361–381.

    Google Scholar 

  20. W. T. Trotter, J. I. Moore and D. P. Sumner (1976) The dimension of a comparability graph, Proc. Amer. Math. Soc. 60, 35–38.

    Google Scholar 

  21. K. Wagner (1936) Bemerkungen zum Vierfarbenproblem, Jahresber. Deutsch. Math.-Verein 46, 26–32.

    Google Scholar 

  22. D. B. West (1985) Parameters of partial orders and graphs: packing, covering, and representation, in I. Rival (ed.), Graphs and Orders, D. Reidel, Dordrecht, pp. 267–350.

    Google Scholar 

  23. M. Yannakakis (1982) The complexity of the partial order dimension problem, SIAM J. Alg. Discrete Methods 3, 351–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. T. Trotter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnyder, W. Planar graphs and poset dimension. Order 5, 323–343 (1989). https://doi.org/10.1007/BF00353652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353652

AMS subject classifications (1980)

Key words

Navigation