Skip to main content
Log in

Perturbation of Dirichlet forms by measures

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Perturbations of a Dirichlet form \(\mathfrak{h}\) by measures μ are studied. The perturbed form \(\mathfrak{h}\)−μ+ is defined for μ in a suitable Kato class and μ+ absolutely continuous with respect to capacity. L p-properties of the corresponding semigroups are derived by approximating μ by functions. For treating μ+, a criterion for domination of positive semigroups is proved. If the unperturbed semigroup has L p -L q -smoothing properties the same is shown to hold for the perturbed semigroup. If the unperturbed semigroup is holomorphic on L 1 the same is shown to be true for the perturbed semigroup, for a large class of measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, J. Brasche and M. Röckner: ‘Dirichlet forms and generalized Schrödinger operators’, in Schrödinger Operators, Proceedings, Sonderborg, H. Holden and A. Jensen (eds.). Springer, Lecture Notes in Physics 345 (1989), 1–42.

  2. S.Albeverio and Z.Ma: ‘Perturbation of Dirichlet forms-Lower semiboundedness, closability, and form cores’, J. Funct. Anal. 99 (1991), 332–356.

    Google Scholar 

  3. S. Albeverio and Z. Ma: ‘Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms’, Preprint SFB 237, 1989.

  4. W.Arendt and C. J. K.Batty: Absorption semigroups and Dirichlet boundary conditions. Math Ann. 295 (1993), 427–448.

    Google Scholar 

  5. H.Bauer: Maβ- und Integrationstheorie, W. de Gruyter, Berlin, 1990.

    Google Scholar 

  6. J.Baxter, G.DalMaso and U.Mosco: Stopping times and Г-convergence. Trans. Amer. Math. Soc. 303 (1987), 1–38.

    Google Scholar 

  7. P.Blanchard and Z.Ma: Semigroup of Schrödinger operators with potentials given by Radon measures. In. Stochastic Processes-Physics and Geometry, S.Albeverio et al. (eds.), Proceedings, Ascona. World Sci., Singapore, 1990.

    Google Scholar 

  8. N.Bouleau and F.Hirsch: Dirichlet Forms and Analysis on Wiener Space. W. de Gruyter, Berlin, 1991.

    Google Scholar 

  9. J. Brasche, P. Exner, Yu. Kuperin and P. Seba: Schrödinger operators with singular interactions. SFB 237-Preprint Nr. 132, Bochum, 1991.

  10. R.Carmona, W. Ch.Masters and B.Simon: Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 (1990), 117–142.

    Google Scholar 

  11. T.Coulhon: ‘Dimension à l'infini d'un semi-groupe analytique’, Bull. Sc. Math. 2o série, 114 (1990), 485–500.

    Google Scholar 

  12. E. B.Davies. One-Parameter Semigroups. Academic Press, London, 1980.

    Google Scholar 

  13. E. B.Davies: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  14. M. Demuth: ‘On topics in spectral and stochastic analysis for Schrödinger operators’, Proceedings Recent Developments in Quantum Mechanics, A. Boutet de Mouvel et al. (eds.), Kluwer, 1991.

  15. A.Devinatz: Schrödinger operators with singular potentials. J. Operator Theory 4 (1980), 25–35.

    Google Scholar 

  16. T.Figiel, T.Iwaniecz and A.Pelczyński: Computing norms of some operators in L p-spaces. Studia Math. 79 (1984), 227–274.

    Google Scholar 

  17. M.Fukushima. Dirichlet Forms and Markov Processes. North Holland, Amsterdam, 1980.

    Google Scholar 

  18. M.Fukushima, K.Sato, and S.Taniguchi: On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28 (1991), 517–535.

    Google Scholar 

  19. L. I. Hedberg: Spectral synthesis and stability in Sobolev spaces, in Euclidean Harmnic Analysis, Proceedings Maryland, J. J. Benedetto (ed.), Lect. Notes in Math. 779 (1980), 73–103.

  20. I. W.Herbst and A. D.Sloan: Perturbation of translation invariant positivity preserving semigroups on L 2(R N). Trans. Amer. Math. Soc. 236 (1978), 325–360.

    Google Scholar 

  21. W.Hoh and N.Jacob: Some Dirichlet forms generated by pseudo differential operators. Bull. Sci. Math. 116 (1992), 383–398.

    Google Scholar 

  22. N.Jacob: Dirichlet forms and pseudo differential operators. Expo. Math. 6 (1988), 313–351.

    Google Scholar 

  23. T.Kato: Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1980.

    Google Scholar 

  24. T. Kato: ‘L p-theory of Schrödinger operators with a singular potential’, in Aspects of Positivity in Functional Analysis, Nagel, Schlotterbeck, Wolff (eds.), North-Holland, 1986.

  25. Z.Ma and M.Röckner. An Introduction to the Theory of (Non-Symmetric) Dirichlet-Forms. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  26. R.Nagel (ed.). One Parameter Semigroups of Positive Operators. Lect. Notes in Math. 1184, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  27. E. M. Ouhabaz: ‘Propriétés d'ordre et de contractivité des semigroupes avec applications aux opérateurs elliptiques’, Thèse de doctorat, Besançon, 1992.

  28. A.Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  29. M.Reed and B.Simon. Methods of Modern Mathematical Physics.I: Functional Analysis. Revised ed., Academic Press, New York, 1980.

    Google Scholar 

  30. M.Reed and B.Simon: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1978.

    Google Scholar 

  31. F.Riesz and B.Sz.-Nagy. Vorlesungen über Funktionalanalysis. VEB Deutscher Verlag d. Wiss., Berlin, 1968.

    Google Scholar 

  32. H. H.Schaerfer: Banach Lattices and Positive Operators. Springer-Verlag, Berlin, 1974.

    Google Scholar 

  33. B.Simon: A canonical demposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28 (1978), 377–385.

    Google Scholar 

  34. B.Simon: Schrödinger semigroups. Bull. (N.S.) Amer. Math. Soc. 7 (1982), 447–526.

    Google Scholar 

  35. E. M.Stein. Topics in Harmonic Analysis, Related to the Littlewood-Paley Theory. Princeton Univ. Press, Princeton, N.J., 1970.

    Google Scholar 

  36. P. Stollmann: Formtechniken bei Schrödingeroperatoren. Diplom thesis Munich, 1985 (unpublished).

  37. P.Stollmann: ‘Admissible and regular potentials for Schrödinger forms’, J. Operator Theory 18 (1987), 139–151.

    Google Scholar 

  38. P.Stollmann: ‘Smooth perturbations of regular Dirichlet forms’, Proc. Amer. Math. Soc. 116 (1992), 747–752.

    Google Scholar 

  39. P.Stollmann: Closed ideals in Dirichlet spaces. Potential Analysis 2 (1993), 263–268.

    Google Scholar 

  40. K.-T.Sturm: Measures charging no polar sets and additive functionals of Brownian motion. Forum Math. 4 (1992), 257–297.

    Google Scholar 

  41. K.-T. Sturm: Schrödinger operators with arbitrary nonnegative potentials, in Operator Calculus and Spectral Theory, Proc. Lambrecht 1991, Demuth, Gramsch, Schulze eds., Birkhäuser, 1992, 291–306.

  42. N.Varopoulos: Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63 (1985), 240–260.

    Google Scholar 

  43. J.Voigt: On the perturbation theory for strongly continuous semigroups. Math. Ann. 229 (1977), 163–171.

    Google Scholar 

  44. J.Voigt: Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal. 67 (1986), 167–205.

    Google Scholar 

  45. J.Voigt: Absorption semigroups. J. Operator Theory 20 (1988), 117–131.

    Google Scholar 

  46. J.Voigt: One-parameter semigroups acting simultaneously on different L p-spaces. Bull. Soc. Royale. Sc. Liège 61 (1992), 465–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stollmann, P., Voigt, J. Perturbation of Dirichlet forms by measures. Potential Analysis 5, 109–138 (1996). https://doi.org/10.1007/BF00396775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396775

Mathematics Subject Classifications (1991)

Key words

Navigation