Skip to main content
Log in

Differential calculi on quantum vector spaces with Hecke-type relations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

From a vector spaceV equipped with a Yang-Baxter operatorR one may form the r-symmetric algebraS R V=TV/〈vwR(vw)〉, which is a quantum vector space in the sense of Manin, and the associated quantum matrix algebraM R V=T(End(V))/〈fgR(fg)R -1〉. In the case whenR satisfies a Hecke-type identityR 2=(1−q)R+q, we construct a differential calculus Ω R V forS R V which agrees with that constructed by Pusz, Woronowicz, Wess, and Zumino whenR is essentially theR-matrix of GL q (n). Elements of Ω R V may be regarded as differential forms on the quantum vector spaceS R V. We show that Ω R V isM R V-covariant in the sense that there is a coaction Φ*: Ω R VM R V ⊗ Ω R V with Φ*d=(1 ⊗ d)Φ* extending the natural coaction Φ:S R VM R VS R V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baez, J. C.,R-commutative geometry and quantization of Poisson algebras, to appear inAdv. Math.

  2. Connes, A., Non-commutative differential geometry,Publ. Math. IHES 62, 257–360 (1985).

    Google Scholar 

  3. Drinfeld, V. G., Quantum groups,Proc. Int. Cong. Math., Berkeley (1986), pp. 798–820.

  4. Faddeev, L. D., Reshetikhin, N. Y. and Takhtajan, L. A., Quantization of Lie groups and Lie algebras,Leningrad Math. J. 1, 193–225 (1990).

    Google Scholar 

  5. Karoubi, M., Homologie cyclique etK théorie,Astérisque 149, 1–147 (1987).

    Google Scholar 

  6. Manin, Yu. I.,Quantum Groups and Noncommutative Geometry, Les Publ. du Centre de Récherches Math., Université de Montrèal, Montrèal, 1988.

    Google Scholar 

  7. Manin, Yu. I.,Topics in Noncommutative Geometry, Princeton Univ. Press, Princeton, 1991.

    Google Scholar 

  8. Pusz, W. and Woronowicz, S. L.,Rep. Math. Phys. 27, 231 (1990).

    Google Scholar 

  9. Rieffel, M., Noncommutative tori, a case study of noncommutative differential manifolds, preprint.

  10. Segal, I. E., Quantized differential forms,Topology 7, 147–171 (1968).

    Google Scholar 

  11. Wess, J. and Zumino, B., Covariant differential calculus on the quantum hyperplane, preprint.

  12. Woronowicz, S. L., Twisted SU(2) group. An example of a noncommutative differential calculus,Publ. Res. Inst. Math. Sci. 23, 117–181 (1987).

    Google Scholar 

  13. Woronowicz, S. L., Compact matrix pseudogroups,Comm. Math. Phys. 111, 613–665 (1987).

    Google Scholar 

  14. Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups),Comm. Math. Phys. 122, 125–170 (1989).

    Google Scholar 

  15. Zumino, B., Deformation of the quantum mechanical phase space with bosonic or fermionic coordinates, preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baez, J.C. Differential calculi on quantum vector spaces with Hecke-type relations. Lett Math Phys 23, 133–141 (1991). https://doi.org/10.1007/BF00703726

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00703726

AMS subject classifications (1991)

Navigation