Skip to main content
Log in

On the quantum group and quantum algebra approach toq-special functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Two interpretations ofq-special functions based on quantum groups and algebras have been presented in the literature. The connection between these approaches is explained using as an example the case whereU q (sl(2)) is the basic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drinfel'd, V. G., Quantum groups, inProceedings of the International Congress of Mathematicians, Berkeley (1986), vol. 1, The American Mathematical Society, Providence, 1987, pp. 798–820.

    Google Scholar 

  2. Jimbo, M., Aq-difference analogue of U(g) and the Yang-Baxter equation,Lett. Math. Phys. 10, 63–69 (1985); Aq-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation,ibid,11, 247-252 (1986).

    Google Scholar 

  3. Woronowicz, S. L., Compact matrix pseudogroups,Comm. Math. Phys. 111, 613–665 (1987).

    Google Scholar 

  4. Faddeev, L. D., Reshetikhin, N. Yu., and Takhtajan, L. A., Quantization of Lie groups and Lie algebras, inAlgebraic Analysis, vol. 1, Academic Press, New York, 1988, p. 129.

    Google Scholar 

  5. Manin, Yu. I., Quantum groups and non-commutative geometry, Centre de Recherches Mathematiques, Montréal, 1988.

    Google Scholar 

  6. Floreanini, R. and Vinet, L.,q-Orthogonal polynomials and the oscillator quantum group,Lett. Math. Phys. 22, 45–54 (1991).

    Google Scholar 

  7. Floreanini, R. and Vinet, L., The metaplectic representation of su q (1, 1) and theq-Gegenbauer polynomials,J. Math. Phys., to appear.

  8. Floreanini, R. and Vinet, L.,q-Conformal quantum mechanics andq-special functions,Phys. Lett. B, to appear.

  9. Floreanini, R. and Vinet, L., Quantum algebras andq-special functions, University of Montreal preprint, UdeM-LPN-TH54, 1991.

  10. Floreanini, R. and Vinet, L., Addition formulas forq-Bessel functions, University of Montreal preprint, UdeM-LPN-TH60, 1991.

  11. Floreanini, R. and Vinet, L., Representations of quantum algebras andq-special functions, in V. Dobrev and W. Scherer (eds),Proceedings of the II International Wigner Symposium, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  12. Floreanini, R. and Vinet, L., Generalizedq-Bessel functions, University of Montreal preprint, UdeM-LPN-TH87, 1992.

  13. Kalnins, E. G., Manocha, H. L., and Miller, W., Models ofq-algebra representations: I. Tensor products of special unitary and oscillator algebras,J. Math. Phys., to appear.

  14. Kalnins, E. G., Miller, W., and Mukherjee, S., Models ofq-algebra representations: The group of plane motions, University of Minnesota preprint, 1992.

  15. Miller, W.,Lie Theory and Special Functions, Academic Press, New York, 1968.

    Google Scholar 

  16. Miller, W., Lie theory andq-difference equations,SIAM J. Math. Anal. 1, 171–188 (1970).

    Google Scholar 

  17. Agarwal, A. K., Kalnins, E. G., and Miller, W., Canonical equations and symmetry techniques forq-series,SIAM J. Math. Anal. 18, 1519–1538 (1987).

    Google Scholar 

  18. Vaksman, L. L. and Soibelman, Ya. S., Algebra of functions of the quantum group SU(2),Funct. Anal. Appl. 22, 1–14 (1988).

    Google Scholar 

  19. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., and Ueno, K., Representations of the quantum group SU q (2) and the littleq-Jacobi polynomials,J. Funct. Anal. 99, 357–386 (1991).

    Google Scholar 

  20. Koornwinder, T. H., Representations of the twisted SU(2) quantum group and someq-hypergeometric orthogonal polynomials,Nederl. Akad. Wetensch. Proc. Ser. A92, 97–117 (1989).

    Google Scholar 

  21. Vaksman, L. L. and Korogodskii, L. I., An algebra of bounded functions on the quantum group of the motions of the plane, andq-analogues of Bessel functions,Soviet Math. Dokl. 39, 173–177 (1989).

    Google Scholar 

  22. Koornwinder, T. H., The addition formula for littleq-Legendre polynomials and the SU(2) quantum group,SIAM J. Math. Anal. 22, 295–301 (1991).

    Google Scholar 

  23. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y., and Ueno, K., Unitary representations of the quantum group SU q (1, 1): structure of the dual space ofU q (sl(2)),Lett. Math. Phys. 19, 187–194 (1990); Unitary representations of the quantum group SU q (1, 1): II-matrix elements of unitary representations and the basic hypergeometric functions,ibid. 19, 195-204 (1990).

    Google Scholar 

  24. Koelnik, H. T., On quantum groups andq-special functions, University of Leiden thesis, 1991.

  25. Swarttouw, R., The Hahn-Extonq-Bessel functions, University of Delft thesis, 1992.

  26. Gasper, G. and Rahman, M.,Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the National Sciences and Engineering Research Council (NSERC) of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floreanini, R., Vinet, L. On the quantum group and quantum algebra approach toq-special functions. Lett Math Phys 27, 179–190 (1993). https://doi.org/10.1007/BF00739576

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00739576

Mathematics Subject Classifications (1991)

Navigation