Skip to main content
Log in

Exact Gerstenhaber algebras and Lie bialgebroids

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We show that to any Poisson manifold and, more generally, to any triangular Lie bialgebroid in the sense of Mackenzie and Xu, there correspond two differential Gerstenhaber algebras in duality, one of which is canonically equipped with an operator generating the graded Lie algebra bracket, i.e. with the structure of a Batalin-Vilkovisky algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhaskara, K. H. and Viswanath, K.: Calculus on Poisson manifolds,Bull. London Math. Soc. 20 (1988), 68–72.

    Google Scholar 

  2. Coste, A., Dazord, P., and Weinstein, A.: Groupoïdes symplectiques,Publ. Dép. Math. Univ. Lyon I, 2A (1987).

    Google Scholar 

  3. Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation,Soviet. Math. Dokl. 27(1) (1983), 68–71. (In Russian,Dokl. Akad. Nauk SSSR 268(2) (1983).)

    Google Scholar 

  4. Drinfeld, V. G.: Quantum groups,Proc. Internat. Congr. Math. (Berkeley, 1986), Vol. 1, Amer. Math. Soc., Providence, 1987, pp. 798–820.

    Google Scholar 

  5. Gelfand, I. M. and Dorfman, I. Ya.: Hamiltonian operators and the classical Yang-Baxter equation,Funct. Anal. Appl. 16(4) (1982), 241–248.

    Google Scholar 

  6. Gerstenhaber, M.: The cohomology structure of an associative ring,Ann. Math. 78 (1963), 267–288.

    Google Scholar 

  7. Gerstenhaber, M. and Schack, S. D.: Algebraic cohomology and deformation theory, in M. Hazewinkel and M. Gerstenhaber (eds),Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11–264.

    Google Scholar 

  8. Gerstenhaber, M. and Schack, S. D.: Algebras, bialgebras, quantum groups and algebraic deformations, in M. Gerstenhaber and J. Stasheff (eds),Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemporary Mathematics 134, Amer. Math. Soc., Providence, 1992, pp. 51–92.

    Google Scholar 

  9. Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories,Comm. Math. Phys. 159 (1994), 265–285.

    Google Scholar 

  10. Huebschmann, J.: Poisson cohomology and quantization,J. Reine Angew. Math. 408 (1990), 57–113.

    Google Scholar 

  11. Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets,Math. USSR Izv. 28(3) (1987), 497–527. (In Russian,Izvestyia 50 (1986).)

    Google Scholar 

  12. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in M. Gotay, J. E. Marsden, and V. Moncrief (eds),Mathematical Aspects of Classical Field Theory, Contemporary Mathematics 132, Amer. Math. Soc., Providence, 1992, pp. 459–489.

    Google Scholar 

  13. Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures,Ann. Inst. Henri Poincaré A 53(1) (1990), 35–81.

    Google Scholar 

  14. Kosmann-Schwarzbach, Y., and Magri, F.: Dualization and deformation of Lie brackets on Poisson manifolds, in J. Janyska and D. Krupka (eds),Differential Geometry and its Applications (Brno, 1989), World Scientific, Singapore, 1990, pp. 79–84.

    Google Scholar 

  15. Koszul, J.-L.: Crochet de Schouten-Nijennuis et cohomologie, in'Elie Carton et les mathématiques d'aujourd'hui', Astérisque, n∘hors série, Soc. Math. Fr., 1985, pp. 257–271.

  16. Krasilshchik, I.: Schouten brackets and canonical algebras, inGlobal Analysis III, Lecture Notes Math. 1334, Springer-Verlag, Berlin, 1988, pp. 79–110.

    Google Scholar 

  17. Krasilshchik, I.: Supercanonical algebras and Schouten brackets,Mat. Zametki 49 (1991), 70–76.

    Google Scholar 

  18. Lian, B. H. and Zuckerman, G. J.: New perspectives on the BRST-algebraic structure of string theory,Comm. Math. Phys. 154 (1993), 613–646.

    Google Scholar 

  19. Mackenzie, K.:Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lect. Notes Series 124, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  20. Mackenzie, K. C. H. and Ping Xu: Lie bialgebroids and Poisson groupoids,Duke Math. J. 73 (1994), 415–452.

    Google Scholar 

  21. Magri, F. and Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19 (1984), University of Milan.

  22. Palais, R. S.:The Cohomology of Lie Rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence, 1961, pp. 130–137.

    Google Scholar 

  23. Penkava, M. and Schwarz, A.: On some algebraic structures arising in string theory, Preprint hep-tn/912071.

  24. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,C.R. Acad. Sci. Paris, Série A 264 (1967), 245–248.

    Google Scholar 

  25. Roger, C.: Algèbres de Lie graduées et quantification, in P. Donatoet al. (eds),Symplectic Geometry and Mathematical Physics, Progress in Mathematics 99, Birkhäuser, Boston, 1991, pp. 374–421.

    Google Scholar 

  26. Vaisman, I.:Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics 118, Birkhäuser, Boston, 1994.

    Google Scholar 

  27. Vaisman, I.: Poisson-Nijenhuis structures revisited,Rendiconti Sem. Mat. Torino 52 (1994).

  28. Weinstein, A.: Some remarks on dressing transformations,J. Fac. Sci. Univ. Tokyo, IA, Math. 35 (1988), 163–167.

    Google Scholar 

  29. Zwiebach, B.: Closed string theory: an introduction, Preprint hep-th/9305026.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmann-Schwarzbach, Y. Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl Math 41, 153–165 (1995). https://doi.org/10.1007/BF00996111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996111

Mathematics subject classifications (1991)

Key words

Navigation