Skip to main content
Log in

Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The system of equations introduced by Lorenz to model turbulent convective flow is studied here for Rayleigh numbersr somewhat smaller than the critical value required for sustained chaotic behavior. In this regime the system is found to exhibit transient chaotic behavior. Some statistical properties of this transient chaos are examined numerically. A mean decay time from chaos to steady flow is found and its dependence uponr is studied both numerically and (very close to the criticalr) analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Coles,J. Fluid Mech. 21:385 (1965).

    Google Scholar 

  2. H. F. Creveling, J. F. dePaz, J. Y. Baladi, and R. J. Schoenhals,J. Fluid Mech. 67:65 (1975).

    Google Scholar 

  3. J. Curry, A Generalized Lorenz System Having Invariant Tori, Preprint (1977).

  4. V. S. Eframovich, V. V. Bikov, and L. P. Silnikov,Dokl. Akad. Nauk SSSR 234:336 (1977).

    Google Scholar 

  5. J. Guckenheimer, Structural Stability of the Lorenz Attractors, Preprint (1978).

  6. H. Haken,Phys. Lett. 53A:77 (1975).

    Google Scholar 

  7. J. L. Kaplan and J. A. Yorke, Preturbulence: A Regime Observed in a Fluid Flow Model of Lorenz,Comm. Math. Phys., in press.

  8. J. L. Kaplan and J. A. Yorke, The Onset of Chaos in a Fluid Flow Model of Lorenz, inProceedings of New York Acad. Sci. Meeting on Bifurcation (1977).

  9. T. Y. Li and J. A. Yorke,Am. Math. Monthly 82:985 (1975).

    Google Scholar 

  10. E. N. Lorenz,J. Atmos. Sci. 20:130 (1963).

    Google Scholar 

  11. M. Lucke,J. Stat. Phys. 15, 455 (1976).

    Google Scholar 

  12. J. E. Marsden and M. McCracken,The Hopf Bifurcation and its Applications (Springer-Verlag, New York, 1976).

    Google Scholar 

  13. J. E. Marsden, inTurbulence Seminar (Springer-Verlag Lecture Notes in Math., No. 615, 1977).

  14. J. B. McLaughlin and P. C. Martin,Phys. Rev. A 12:186 (1975).

    Google Scholar 

  15. G. Pianigiani and J. A. Yorke,Trans. Am. Math. Soc., in press.

  16. K. A. Robbins,Proc. Nat. Acad. Sci. 73(12):4296 (1976).

    Google Scholar 

  17. K. A. Robbins,Math. Proc. Camb. Phil. Soc., to appear (1977).

  18. D. Ruelle and F. Takens,Comm. Math. Phys. 20:167 (1971);23:343 (1971).

    Google Scholar 

  19. A. N. Sharkovskii. Coexistence of the Cycles of a Continuous Mapping of the Line into Itself (in Russian),Ukr. Math. J. 16(1):61 (1964).

    Google Scholar 

  20. P. Welander,J. Fluid Mech. 29:17 (1967).

    Google Scholar 

  21. W. V. R. Malkus,Mem. Roy. Sci. Liège, Ser. 6 4:125 (1972).

    Google Scholar 

  22. R. F. Williams, The Structure of Lorenz Attractors,Publ. Inst. Hautes Etudes Sci., in press; see also R. F. Williams and J. Guckenheimer, Structural Stability of Lorenz Attractors,ibid.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by NASA grant NSG 5209; partial support of computer costs was provided by the University of Maryland-Baltimore County Computer Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yorke, J.A., Yorke, E.D. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. J Stat Phys 21, 263–277 (1979). https://doi.org/10.1007/BF01011469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011469

Key words

Navigation