Skip to main content
Log in

Polymers on disordered trees, spin glasses, and traveling waves

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Lipowsky and M. E. Fisher,Phys. Rev. Lett. 56:472 (1986).

    Google Scholar 

  2. M. E. Fisher,J. Chem. Soc. Faraday Trans. 82:1569 (1986).

    Google Scholar 

  3. D. Foster, D. R. Nelson, and M. J. Stephen,Phys. Rev. A 16:732 (1977).

    Google Scholar 

  4. H. K. Janssen and B. Schmittman,Z. Phys. B 63:517 (1986).

    Google Scholar 

  5. H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985).

    Google Scholar 

  6. D. A. Huse, C. L. Henley, and D. S. Fisher,Phys. Rev. Lett. 55:2924 (1985).

    Google Scholar 

  7. D. Dhar,Phase Transitions 9:51 (1987).

    Google Scholar 

  8. J. Imbrie and T. Spencer, preprint.

  9. P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball,Phys. Rev. A 34:5091 (1986).

    Google Scholar 

  10. D. E. Wolf and J. Kertész,Europhys. Lett. 4:651 (1987).

    Google Scholar 

  11. M. Kardar and Y. Zhang,Phys. Rev. Lett. 58:2087 (1987).

    Google Scholar 

  12. A. Bovier, J. Fröhlich, and U. Glaus,Phys. Rev. B 34:6409 (1986).

    Google Scholar 

  13. M. Kardar, G. Parisi, and Y. Zhang,Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  14. J. Krug,Phys. Rev. A 36:5465 (1987).

    Google Scholar 

  15. A. Kolmogorov, I. Petrovsky, and N. Piscounov,Moscou Univ. Bull. Math. 1:1 (1937).

    Google Scholar 

  16. H. P. McKean,Commun. Pure Appl. Math. 28:323 (1975).

    Google Scholar 

  17. M. Bramson,Convergence of Solutions of the Kolmogorov Equation to Traveling Waves (Memoirs of the American Mathematical Society, No. 285, 1983).

  18. B. Derrida,Phys. Rev. B 24:2613 (1981).

    Google Scholar 

  19. B. Derrida and G. Toulouse,J. Phys. Lett. (Paris) 46:223 (1985).

    Google Scholar 

  20. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro,J. Phys. (Paris) 45:843 (1984).

    Google Scholar 

  21. B. Derrida and H. Flyvbjerg,J. Phys. A 20:5273 (1987).

    Google Scholar 

  22. B. Derrida,J. Phys. Lett. 46:401 (1985).

    Google Scholar 

  23. B. Derrida and E. Gardner,J. Phys. C 19:5783 (1986).

    Google Scholar 

  24. D. Capocaccia, M. Cassandro, and P. Picco,J. Stat. Phys. 46:493 (1987).

    Google Scholar 

  25. C. De Dominicis and H. J. Hilhorst,J. Phys. Lett. (Paris) 46:909 (1985).

    Google Scholar 

  26. D. Ruelle,Commun. Math. Phys. 108:225 (1987).

    Google Scholar 

  27. J. P. Nadal and J. Vannimenus,J. Phys. (Paris) 46:17 (1985), and references therein.

    Google Scholar 

  28. A. Bialas and R. Peschanski,Phys. Lett. B, submitted (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Spohn, H. Polymers on disordered trees, spin glasses, and traveling waves. J Stat Phys 51, 817–840 (1988). https://doi.org/10.1007/BF01014886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014886

Key words

Navigation