Skip to main content
Log in

Statistical mechanics of probabilistic cellular automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the behavior of discrete-time probabilistic cellular automata (PCA), which are Markov processes on spin configurations on ad-dimensional lattice, from a rigorous statistical mechanics point of view. In particular, we exploit, whenever possible, the correspondence between stationary measures on the space-time histories of PCAs on ℤd and translation-invariant Gibbs states for a related Hamiltonian on ℤ(d+1). This leads to a simple large-deviation formula for the space-time histories of the PCA and a proof that in a high-temperature regime the stationary states of the PCA are Gibbsian. We also obtain results about entropy, fluctuations, and correlation inequalities, and demonstrate uniqueness of the invariant state and exponential decay of correlations in a high-noise regime. We discuss phase transitions in the low-noise (or low-temperature) regime and review Toom's proof of nonergodicity of a certain class of PCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Domany, Exact results for two- and three-dimensional Ising and Potts models,Phys. Rev. Lett. 52:871–874 (1984).

    Google Scholar 

  2. A. M. W. Verhagen, An exactly soluble case of the triangular Ising model in a magnetic field,J. Stat. Phys. 15:219–232 (1976).

    Google Scholar 

  3. I. Peschel and V. J. Emery, Calculations of spin correlations in two-dimensional Ising systems from one-dimensional kinetic models,Z. Phys. B 43:241–249 (1981).

    Google Scholar 

  4. E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed percolation,Phys. Rev. Lett. 53:311–314 (1984).

    Google Scholar 

  5. P. Ferrari, J. L. Lebowitz, and C. Maes, On the positivity of correlations in nonequilibrium spin systems,J. Stat. Phys. 53:295–305 (1988).

    Google Scholar 

  6. S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA's to equilibrium systems and back, preprint, Rutgers University (1988).

  7. P. Rujàn, Cellular automata and statistical mechanical models,J. Stat. Phys. 49:139–222 (1987).

    Google Scholar 

  8. A. Georges and P. Le Doussal, From equilibrium spin models to probabilistic cellular automata, preprint, Laboratoire de Physique Théorique de l'École Normal Supérieure (1987); to appear inJ. Stat. Phys. 54 (1989).

  9. A. L. Toom, Stable and attractive trajectories in multicomponent systems, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Dekker, New York, 1980).

    Google Scholar 

  10. H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).

    Google Scholar 

  11. J. Stephenson, Ising model with antiferromagnetic next-nearest-neighbor coupling. Spin correlations and discrete points,Phys. Rev. B 1:4405–4409 (1970).

    Google Scholar 

  12. J. Stephenson and D. Betts, Ising model with antiferromagnetic next-nearest-neighbor coupling II. Ground states and phase diagrams,Phys. Rev. B 2:2702–2706 (1970).

    Google Scholar 

  13. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  14. P. Gács, Reliable computation with cellular automata,J. Computer System Sci. 32:15–78 (1988).

    Google Scholar 

  15. L. Gray, The behavior of processes with statistical mechanical properties, inPercolation Theory and Ergodic Theory of Infinite Particle Systems, H. Kesten, ed. (Springer-Verlag, New York, 1987).

    Google Scholar 

  16. L. Gray, private communication.

  17. Y. Katznelson and B. Weiss, Commuting measure-preserving transformations,Israel J. Math. 12:161–173 (1972).

    Google Scholar 

  18. I. Kanter and D. S. Fisher, Existence of ordered phases in stochastic non-equilibrium ferromagnetic Ising systems, preprint, Princeton University (1989).

  19. C. Bennett and G. Grinstein, Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems,Phys. Rev. Lett. 55:657–660 (1985).

    Google Scholar 

  20. B. M. Boghosian and C. D. Levermore, A cellular automaton for Burger's equation,Complex Systems 1:17–29 (1987); C. Burges and S. Zaleski, Buoyant mixtures of cellular automaton gases,Complex Systems 1:31–49 (1987).

    Google Scholar 

  21. V. A. Malyshev, The central limit theorem for Gibbsian random fields,Soviet Math. Dokl. 16:1141–1145 (1975).

    Google Scholar 

  22. C. M. Newman, A general central limit theorem for FKG systems,Commun. Math. Phys. 91:75–80 (1983).

    Google Scholar 

  23. O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Lecture Notes in Physics, Vol. 20, 1971), pp. 1–113.

  24. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, New York, 1985).

    Google Scholar 

  25. J. L. Lebowitz and R. H. Schonmann, On the asymptotics of occurrence times of rare events for stochastic spin systems,J. Stat. Phys. 48:727–751 (1987).

    Google Scholar 

  26. J. L. Lebowitz and R. H. Schonmann, Pseudo-free energies and large deviations for non Gibbsian FKG measures,Prob. Theory Related Fields 77:49–64 (1988).

    Google Scholar 

  27. R. B. Griffiths, Rigorous results and theorems, inPhase Transitions and Critical Phenomena, Vol. I, C. Domb and M. Green, eds. (Academic Press, New York, 1972).

    Google Scholar 

  28. R. Fernàndez and J. Slawny, Inequalities and many phase transitions in ferromagnetic systems,Commun. Math. Phys. 121:91–120 (1989).

    Google Scholar 

  29. C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).

    Google Scholar 

  30. J. L. Lebowitz, Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems,Commun. Math. Phys. 28:313–321 (1972).

    Google Scholar 

  31. J. L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium states for Ising spin systems,Commun. Math. Phys. 25:276–282 (1972).

    Google Scholar 

  32. R. L. Dobrushin and S. B. Shlosman, Completely analytic interactions: Constructive description,J. Stat. Phys. 46:983–1014 (1987).

    Google Scholar 

  33. G. Gallavotti and S. Miracle-Sole, Correlation functions of a lattice system,Commun. Math. Phys. 7:274–288 (1968).

    Google Scholar 

  34. R. L. Dobrushin and S. B. Shlosman, Constructive criterion for the uniqueness of a Gibbs field, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe, and D. Szász, eds. (Birkhauser, Boston, 1985), pp. 347–370.

    Google Scholar 

  35. R. L. Dobrushin, The description of a random field by means of conditional probabilities and its regularity,Theor. Prob. Appl. 13:197–224 (1968).

    Google Scholar 

  36. R. Holley and D. Stroock, Dual processes and their application to infinite interacting systems,Adv. Math. 32:149–174 (1979).

    Google Scholar 

  37. L. N. Vasershtein, Markov processes over denumerable products of spaces, describing large systems of automata,Problems Inform. Transmission 5:47–52 (1969).

    Google Scholar 

  38. R. L. Dobrushin, Markov processes with a large number of locally interacting components: Existence of a limit process and its ergodicity,Problems Inform. Transmission 7:149–164 (1971).

    Google Scholar 

  39. J. Steif,d-Convergence to equilibrium and space-time Bernoullicity for spin systems in theM<ε case, preprint, Rutgers University (1989).

  40. H. Kiinsch, Non reversible stationary measures for infinite interacting particle systems,Z. Wahrsch. Verw. Geb. 66:407–424 (1984).

    Google Scholar 

  41. C. J. Preston,Gibbs States on Countable Sets (Cambridge University Press, Cambridge, 1974).

    Google Scholar 

  42. C. Bennett, private communication.

  43. S. A. Pirogov and Ya. G. Sinai, Phase diagrams for classical lattice systems,Theor. Math. Phys. 25:1185–1192;26:39–49 (1976).

    Google Scholar 

  44. J. Slawny, Low temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1986).

  45. J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states,J. Stat. Phys. 54:89–161 (1989).

    Google Scholar 

  46. J. Park, K. Stieglitz, and W. Thurston, Soliton-like behavior in automata,Physica 19D (1986).

  47. A. S. Fokas, E. Papadopoulou, Y. Saridakis, and M. J. Ablowitz, Interaction of simple particles in soliton cellular automata, preprint, Institute for Nonlinear Studies; to appear inStud. Appl. Math.

  48. J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion,J. Stat. Phys. 46:39–49 (1987).

    Google Scholar 

  49. T. C. Dorlas and A. C. D. Van Enter, Non-Gibbsian limit for large-block majority-spin transformation, to appear inJ. Stat. Phys. 55 (1989).

  50. L. Gray, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Maes, C. & Speer, E.R. Statistical mechanics of probabilistic cellular automata. J Stat Phys 59, 117–170 (1990). https://doi.org/10.1007/BF01015566

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015566

Key words

Navigation