Skip to main content
Log in

Statistical mechanics of the nonlinear Schrödinger equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the statistical mechanics of a complex fieldø whose dynamics is governed by the nonlinear Schrödinger equation. Such fields describe, in suitable idealizations, Langmuir waves in a plasma, a propagating laser field in a nonlinear medium, and other phenomena. Their Hamiltonian

$$H(\phi ) = \int_\Omega {[\frac{1}{2}|\nabla \phi |^2 - (1/p) |\phi |^p ] dx}$$

is unbounded below and the system will, under certain conditions, develop (self-focusing) singularities in a finite time. We show that, whenΩ is the circle and theL 2 norm of the field (which is conserved by the dynamics) is bounded byN, the Gibbs measureυ obtained is absolutely continuous with respect to Wiener measure and normalizable if and only ifp andN are such that classical solutions exist for all time—no collapse of the solitons. This measure is essentially the same as that of a one-dimensional version of the more realisitc Zakharov model of coupled Langmuir and ion acoustic waves in a plasma. We also obtain some properties of the Gibbs state, by both analytic and numerical methods, asN and the temperature are varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  2. V. E. Zakharov,Sov. Phys. JETP 35:908–914 (1972).

    Google Scholar 

  3. M. V. Goldman,Rev. Mod. Phys. 56:709–735 (1984).

    Google Scholar 

  4. H. A. Rose, D. F. DuBois, and B. Bezzerides,Phys. Rev. Lett. 58:2547–2550 (1985).

    Google Scholar 

  5. D. W. McLaughlin, G. C. Papanicolaou, C. Sulem, and P. L. Sulem,Phys. Rev. A 34:1200–1210 (1986).

    Google Scholar 

  6. D. Ruelle,Statistical Mechanics (Benjamin, Reading, Massachusetts, 1974).

    Google Scholar 

  7. J. Glimm and A. Jaffe,Quantum Physics (Springer-Verlag, New York, 1981).

    Google Scholar 

  8. J. Ginibre and G. Velo,Ann. Inst. Henri Poincaré 28:287–316 (1978).

    Google Scholar 

  9. V. E. Zakharov and A. B. Shabat,Sov. Phys. JETP 34:62–69 (1972).

    Google Scholar 

  10. D. Russell, D. F. DuBois, and H. A. Rose,Phys. Rev. Lett. 56:838–841 (1986).

    Google Scholar 

  11. M. Weinstein,Commun. Math. Phys. 87:567–576 (1983).

    Google Scholar 

  12. S. H. Schochet and M. I. Weinstein,Commun. Math. Phys. 106:569–580 (1986).

    Google Scholar 

  13. H. Tasso,Phys. Lett. A 120:464–465 (1987).

    Google Scholar 

  14. G. Pelletier,J. Plasma Phys. 24:287–297 (1980).

    Google Scholar 

  15. G. Pelletier,J. Plasma Phys. 24:421–443 (1980).

    Google Scholar 

  16. G. Z. Sun, D. R. Nicholson, and H. A. Rose,Phys. Fluids 28:2395–2405 (1985).

    Google Scholar 

  17. R. H. Kraichnan and D. Montgomery,Rep. Prog. Phys. 43:547–619 (1979).

    Google Scholar 

  18. L. Nirenberg,Commun. Pure Appl. Math. 8:648–674 (1955).

    Google Scholar 

  19. R. T. Glassey,J. Math. Phys. 18:1794–1797 (1977).

    Google Scholar 

  20. O. Kavian, A Remark on the blowing-up of solutions to the Cauchy problem for the non-linear Schrödinger equation, preprint, Lab. Ana. Nu., Universite P. & M. Curie.

  21. B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979).

    Google Scholar 

  22. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York, 1971).

    Google Scholar 

  23. D. Dürr and A. Bach,Commun. Math. Phys. 60:153–170 (1978).

    Google Scholar 

  24. G. H. Hardy and J. E. Littlewood,Acta Mathematica 37:193–238 (1914).

    Google Scholar 

  25. E. Hille and R. S. Phillips,Functional Analysis and Semi-Groups (American Mathematical Society, Providence, Rhode Island, 1957).

    Google Scholar 

  26. A. Zygmund,Trigonometrical Series (Warsaw, 1935).

  27. B. Simon,The P(φ) Euclidean (Quantum) Field Theory (Princeton University Press, Princeton, New Jersey, 1974).

    Google Scholar 

  28. G. Papanicolaou, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Rose, H.A. & Speer, E.R. Statistical mechanics of the nonlinear Schrödinger equation. J Stat Phys 50, 657–687 (1988). https://doi.org/10.1007/BF01026495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026495

Key words

Navigation