Skip to main content
Log in

Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is a general and exact study of multiple Hamiltonian walks (HAW) filling the two-dimensional (2D) Manhattan lattice. We generalize the original exact solution for a single HAW by Kasteleyn to a system ofmultiple closed walks, aimed at modeling a polymer melt. In 2D, two basic nonequivalent topological situations are distinguished. (1) the Hamiltonian loops are allrooted andcontractible to a point:adjacent one to another, and, on a torus,homotopic to zero. (2) the loops can encircle one another and, on a torus, canwind around it. Forcase 1, the grand canonical partition function and multiple correlation functions are calculated exactly as those of multiple rooted spanningtrees or of a massive 2Dfree field, critical at zero mass (zero fugacity). The conformally invariant continuum limit on a Manhattantorus is studied in detail. The melt entropy is calculated exactly. We also consider the relevant effect of free boundary conditions. The number of single HAWs on Manhattan lattices with other perimeter shapes (rectangular, Kagomé, triangular, and arbitrary) is studied and related to the spectral theory of the Dirichlet Laplacian. This allows the calculation of exact shape-dependent configuration exponents y. An exact surface critical exponent is obtained. Forcase 2, nested and winding Hamiltonian circuits are allowed. An exact equivalence to thecritical Q-state Potts model exists, whereQ 1/2 is the walk fugacity. The Hamiltonian system is then always critical (forQ<-4). The exact critical exponents, in infinite numbers, are universal and identical to those of theO(n=Q 1/2) model in its low-temperature phase, i.e. are those of dense polymers. The exact critical partition functions on the torus are given from conformai invariance theory. These models 1 and 2 yield the two first exactly solved models of polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hamilton, Tour around the world: Twenty towns on the earth are figured by the 20 vertices of a regular dodecahedron (a polyhedron with 12 pentagonal faces and 20 vertices).

  2. C. Berge,Graphes et hypergraphes (Dunod, Paris, 1970).

    Google Scholar 

  3. L. Euler,Commentationes Arithmeticae Collectae (St. Peterburg, 1766), p. 337.

  4. P. W. Kasteleyn,Physica 29:1329 (1963).

    Google Scholar 

  5. F. Harary, ed.,Graph Theory and Theoretical Physics (Academic Press, London, 1967).

    Google Scholar 

  6. T. van Aardenne-Ehrenfest and N. G. de Bruijn,Simon Stevin 28:203 (1951).

    Google Scholar 

  7. W. T. Tutte,Proc. Camb. Phil. Soc. 44:463 (1948).

    Google Scholar 

  8. G. Kirchhoff,Ann. Phys. Chem. 72:497 (1847).

    Google Scholar 

  9. M. N. Barber,Physica 48:237 (1970).

    Google Scholar 

  10. A. Malakis,Physica 84A:256 (1976).

    Google Scholar 

  11. W. J. C. Orr,Trans. Faraday Soc. 43:12 (1947).

    Google Scholar 

  12. C. Domb,Polymer 15:259 (1974).

    Google Scholar 

  13. J. F. Nagle,Proc. R. Soc. Lond. A 337:569 (1974).

    Google Scholar 

  14. M. Gordon, P. Kapadia, and A. Malakis,J. Phys. A 5:751 (1976).

    Google Scholar 

  15. P. D. Gujrati and M. Goldstein,J. Chem. Phys. 74:2596 (1981).

    Google Scholar 

  16. T. G. Schmaltz, G. E. Hite, and D. J. Klein,J. Phys. A 17:445 (1984).

    Google Scholar 

  17. H. Orland, C. Itzykson, and C. De Dominicis,J. Phys. Lett. (Paris) 46:L353 (1985).

    Google Scholar 

  18. J. F. Nagle, P. D. Gujrati, and M. Goldstein,J. Phys. Chem. 88:4599 (1984); J. F. Nagle,J. Stat. Phys. 38:531 (1985).

    Google Scholar 

  19. M. G. Bawendi and K. F. Freed,J. Chem. Phys. 84:7036 (1986).

    Google Scholar 

  20. B. Duplantier,J. Phys. A 19:L1009 (1986).

    Google Scholar 

  21. H. Saleur,Phys. Rev. B 35:3657 (1987).

    Google Scholar 

  22. B. Duplantier and H. Saleur,Nucl. Phys. B 290[FS20]:291 (1987).

    Google Scholar 

  23. M. den Nijs,Phys. Rev. B 27:1674 (1983), and references therein.

    Google Scholar 

  24. B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982);J. Stat. Phys. 34:781 (1984); inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  25. B. Duplantier,J. Stat. Phys. 49:411 (1987).

    Google Scholar 

  26. F. Y. Wu,Rev. Mod. Phys. 54:239 (1982).

    Google Scholar 

  27. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  28. J. L. Cardy,Nucl. Phys. B 275[FS17]:580 (1986).

    Google Scholar 

  29. A. Weil,Elliptic Functions According to Eisenstein and Kronecker (Springer-Verlag, 1976).

  30. C. Itzykson and J. B. Zuber,Nucl. Phys. B 275:561 (1986).

    Google Scholar 

  31. N. L. Balazs, C. Schmit, and A. Voros,J. Stat. Phys. 46:1067 (1987), and references therein.

    Google Scholar 

  32. A. E. Ferdinand and M. E. Fisher,Phys. Rev. B 185:832 (1969).

    Google Scholar 

  33. H. Saleur and C. Itzykson,J. Stat. Phys. 48:449 (1987).

    Google Scholar 

  34. C. Itzykson, Marseille Lecture Notes, SPhT/86 (1986).

  35. R. G. Petschek and P. Pfeuty,Phys. Rev. Lett. 58:1096 (1987).

    Google Scholar 

  36. H. Blöte, M. P. Nightingale, and J. L. Cardy,Phys. Rev. Lett. 56:742 (1986); I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  37. M. Gaudin,J. Phys. (Paris) 48:1633 (1987).

    Google Scholar 

  38. M. Kac,Am. Math. Monthly 73:1 (1966); H. P. McKean and I. M. Singer,J. Diff. Geom. 1:43 (1967); H. P. Baltes and E. R. Hilf,Spectra of Finite Systems (Bibliographisches Institut, Mannheim, 1976), Chapter VI.

    Google Scholar 

  39. B. Duplantier and H. Saleur,Phys. Rev. Lett. 57:3179 (1986).

    Google Scholar 

  40. R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A 9:397 (1976).

    Google Scholar 

  41. R. J. Baxter,J. Phys. C 6:L445 (1973).

    Google Scholar 

  42. H. Saleur and B. Duplantier,Phys. Rev. Lett. 58:2325 (1987).

    Google Scholar 

  43. H. Saleur,J. Phys. A 19:L807 (1986).

    Google Scholar 

  44. C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972).

    Google Scholar 

  45. P. Di Francesco, H. Saleur, and J. B. Zuber,Nucl. Phys. B 285[FS19]:454 (1987);J. Stat. Phys. 49:57 (1987).

    Google Scholar 

  46. V. L. S. Dotsenko and V. A. Fateev,Nucl. Phys. B 240:312 (1984).

    Google Scholar 

  47. B. Duplantier,Phys. Rev. Lett. 57:941 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplanticr, B., David, F. Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice. J Stat Phys 51, 327–434 (1988). https://doi.org/10.1007/BF01028464

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028464

Key words

Navigation