Skip to main content
Log in

The wetting transition in a random surface model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We continue our analysis of the phase diagram of a discrete random surface, with no “downward fingers,” lying above a flat two-dimensional substrate. The surface is closely related to the 2D Ising model and its free energy is exactly solvable in much (but not all) of the phase diagram. There is a transition at temperatureT w from a high-T infinite height or wet phase to a low-T finite height or partially wet phase. Previously it was shown that when a parameterb, related to the contact interaction, is positive,T w is independent ofb and there is a logarithmic specific heat divergence asT w is approached fromeither side. Here we show that forb<0,T w does depend onb and there isno thermodynamic singularity from the wet phase. The partially wet phases forb⩽0 andb>0 differ in the absence or presence of a monolayer covering the entire substrate; this results in a first-order transition across the lineb=0,T<T w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. B. Abraham and C. M. Newman,Phys. Rev. Lett. 61:1969 (1988).

    Google Scholar 

  2. D. B. Abraham and C. M. Newman,Commun. Math. Phys. 125:181 (1989).

    Google Scholar 

  3. H. W. Diehl, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986).

    Google Scholar 

  4. D. S. Fisher and M. E. Fisher,Phys. Rev. 25:3192 (1982).

    Google Scholar 

  5. M. E. Fisher,J. Stat. Phys. 34:667 (1984).

    Google Scholar 

  6. J. K. Percus,Commun. Math. Phys. 40:283 (1975).

    Google Scholar 

  7. H. van Beijeren,Commun. Math. Phys. 40:1 (1975).

    Google Scholar 

  8. A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo,Commun. Math. Phys. 51:315 (1976).

    Google Scholar 

  9. K. Jogdeo,Ann. Stat. 6:232 (1978).

    Google Scholar 

  10. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre,Commun. Math. Phys. 22:89 (1971).

    Google Scholar 

  11. J. D. Esary, F. Proschan, and D. W. Walkup,Ann. Math. Stat. 38:1466 (1967).

    Google Scholar 

  12. J. L. Lebowitz,Phys. Rev. B 5:2538 (1972).

    Google Scholar 

  13. M. Aizenman, J. Bricmont, and J. L. Lebowitz,J. Stat. Phys. 49:859 (1987).

    Google Scholar 

  14. Y. Higuchi,Z. Wahr. 61:75 (1982).

    Google Scholar 

  15. H. Kesten,J. Stat. Phys. 25:717 (1981).

    Google Scholar 

  16. L. Russo,Z. Wahr. 56:229 (1981).

    Google Scholar 

  17. J. W. Essam, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Jerry Percus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, D.B., Newman, C.M. The wetting transition in a random surface model. J Stat Phys 63, 1097–1111 (1991). https://doi.org/10.1007/BF01030001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030001

Key words

Navigation