Skip to main content
Log in

Fractional integral and its physical interpretation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A relationship is established between Cantor's fractal set (Cantor's bars) and a fractional integral. The fractal dimension of the Cantor set is equal to the fractional exponent of the integral. It follows from analysis of the results that equations in fractional derivatives describe the evolution of physical systems with loss, the fractional exponent of the derivative being a measure of the fraction of the states of the system that are preserved during evolution timet. Such systems can be classified as systems with “residual” memory, and they occupy an intermediate position between systems with complete memory, on the one hand, and Markov systems, on the other. The use of such equations to describe transport and relaxation processes is discussed. Some generalizations that extent the domain of applicability of the fractional derivative concept are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mandelbrot,Fractal Geometry of Nature, Freeman, San-Francisco (1983).

    Google Scholar 

  2. Fractals in Physics. Proceedings of Sixth International Symposium on Fractals in Physics [Russian translation], Mir, Moscow (1988).

  3. T. Pajkossy and L. Nyikos,Electrokhim. Acta,34, 171 (1989).

    Google Scholar 

  4. T. Kaplan, L. J. Gray, and S. H. Lin,Phys. Rev. B,35, 5379 (1987).

    Google Scholar 

  5. B. Sapoval,Silid State Ionics,23, 253 (1987).

    Google Scholar 

  6. A. Le Mehaute, A. Gnibert, M. Delaye, and C. Filippi,C. R. Acad. Sci. Ser. II,294, 835 (1982).

    Google Scholar 

  7. A. Le Mehaute and G. Crepy,Solid State Ionics,9/10, 359 (1983).

    Google Scholar 

  8. A. Le Mehaute and A. Dugast,J. Power Sources,9, 359 (1983).

    Google Scholar 

  9. R. R. Nigmatullin,Phys. Status Solidi B,123, 739 (1984).

    Google Scholar 

  10. R. R. Nigmatullin,Phys. Status Solidi B,124, 389 (1984).

    Google Scholar 

  11. K. Oldham and J. Spanier,Fractional Calculus, Academic Press, New York (1973).

    Google Scholar 

  12. S. G. Samko, A. A. Kilbas, and O. I. Marichev,Integrals and Derivatives of Fractional Order and Some Applications of Them [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

  13. Yu. I. Babenko,Heat and Mass Transfer. A Method of Calculating and Diffusion Fluxes [in Russian]., Khimiya, Leningrad (1986).

    Google Scholar 

  14. R. Sh. Nigmatullin and B. A. Belavin,Tr. KAI,82, 58 (1964).

    Google Scholar 

  15. R. R. Nigmatullin,Phys. Status Solidi B,133, 425 (1986).

    Google Scholar 

  16. L. A. Dissado, R. R. Nigmatullin, and R. M. Hill, in:Dynamical Processes in Condensed Matter (ed. M. Evans),63, 253 (1985).

  17. R. R. Nigmatullin,Fiz Tverd. Tela (Leningrad),27, 1583 (1985).

    Google Scholar 

  18. A. K. Jonscher,Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983).

    Google Scholar 

  19. W. F. Brown (Jr.),Dielectrics, in:Handbuch der Physik, Vol. 17, Springer Verlag, Berlin (1956).

    Google Scholar 

  20. D. N. Zubarev,Nonequilibrium Statistical Thermodynamics Plenum, New York (1974).

    Google Scholar 

Download references

Authors

Additional information

Kazan State University. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 90, No. 3, pp. 354–368, March, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigmatullin, R.R. Fractional integral and its physical interpretation. Theor Math Phys 90, 242–251 (1992). https://doi.org/10.1007/BF01036529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01036529

Keywords

Navigation