Skip to main content
Log in

Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is rigorously proven that the spectrum of the tight-binding Fibonacci Hamiltonian,H mn m, n+1 m, n−1 m, n μ[(n+1)α]−[nα]) where α=(√5−1)/2 and [·] means integer part, is a Cantor set of zero Lebesgue measure for all real nonzeroμ, and the spectral measures are purely singular continuous. This follows from a recent result by Kotani, coupled with the vanishing of the Lyapunov exponent in the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Kohmoto, L. P. Kadanoff, and C. Tang, Localization problem in one dimension: Mapping and escape,Phys. Rev. Lett. 50:1870–1872 (1983).

    Google Scholar 

  2. S. Ostlund, R. Pandit, D. Rand, H. J. Schnellnhuber, and E. D. Siggia, One-dimensional Schrödinger equation with an almost periodic potential,Phys. Rev. Lett. 50:1873–1876 (1983).

    Google Scholar 

  3. M. Kohmoto and Y. Oono, Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map,Phys. Lett. 102A:145–148 (1984).

    Google Scholar 

  4. M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation,Commun. Math. Phys. 107:295–318 (1986).

    Google Scholar 

  5. A. Sütő, The spectrum of a quasiperiodic Schrödinger operator,Commun. Math. Phys. 111:409–415 (1987).

    Google Scholar 

  6. S. Kotani, Jacobi matrices with random potentials taking finitely many values, Preprint, University of Tokyo (1988).

  7. J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states,Duke Math. J. 50:369–391 (1983).

    Google Scholar 

  8. A. S. Besicovitch,Almost Periodic Functions (Cambridge University Press, Cambridge, 1932).

    Google Scholar 

  9. H. Furstenberg and H. Kesten, Products of random matrices,Ann. Math. Stat. 31:457–469 (1960).

    Google Scholar 

  10. D. Herbert and R. Jones, Localized states in disordered systems,J. Phys. C 4:1145–1161 (1971).

    Google Scholar 

  11. D. J. Thouless, A relation between the density of states and the range of localization in one dimensional random systems,J. Phys. C 5:77–81 (1972).

    Google Scholar 

  12. W. Craig and B. Simon, Subharmonicity of the Lyapunov index,Duke Math. J. 50:551–560 (1983).

    Google Scholar 

  13. S. Kotani, Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, inStochastic Analysis, K. Ito, ed. (North-Holland, Amsterdam, 1984), pp. 225–247.

    Google Scholar 

  14. B. Simon, Kotani theory of one-dimensional stochastic Jacobi matrices,Commun. Math. Phys. 89:227–234 (1983).

    Google Scholar 

  15. J. Bellissard, B. Jochum, E. Scoppola, and D. Testard, Spectral properties of one dimensional quasi-crystals, preprint, March 1989.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Central Research Institute for Physics, Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sütő, A. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J Stat Phys 56, 525–531 (1989). https://doi.org/10.1007/BF01044450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044450

Key words

Navigation