Skip to main content
Log in

Maximum and minimum sets for some geometric mean values

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Ifv r is ther-dimensional volume of ther-simplex formed byr+1 points taken at random from a compact setK in ℝn, withrn, andh is a (strictly) increasing function, then the (unique) compact set that gives the minimum expected value ofh o v r, is proved to be the ellipsoid (whenr=n) and the ball (whenr<n) almost everywhere. This result is established by using a single integral inequality for centrally symmetric quasiconvex functions integrated over compact rectangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities.Proc. Am. Math. Soc. 6, 170–176.

    Google Scholar 

  2. Berge, C. (1963).Topological Spaces, Oliver and Boyd, Edinburgh.

    Google Scholar 

  3. Blaschke, W. (1917). Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten.Leipziger Ber. 69, 436–453.

    Google Scholar 

  4. Blaschke, W. (1918). Eine Isoperimetrische Eigenschaft des Kreises.Math. Z. 1, 52–57.

    Google Scholar 

  5. Blaschke, W. (1923).Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie, Springer-Verlag, Berlin.

    Google Scholar 

  6. Borden, R. S. (1983).A Course in Advanced Calculus, North-Holland, New York.

    Google Scholar 

  7. Buchta, C. (1980). Zufällige Polyeder—Eine Übersicht. InZahlentheoretische Analysis (ed. by Hlawka, E. Ed.), Lecture Notes in Mathematics 1114, Springer-Verlag, Berlin.

    Google Scholar 

  8. Carleman, T. (1919). Über eine isoperimetrisch Aufgabe and ihre physikalischen anwendungen.Math. Z. 3, 1–7.

    Google Scholar 

  9. Cormier, R. J. (1971). Steiner Symmetrization inE n.Rev. Mat. Hisp-Amer. 31(4), 197–204.

    Google Scholar 

  10. Groemer, H. (1973). On some mean values associated with a randomly selected simplex in a convex set.Pacific J. Math. 45, 525–533.

    Google Scholar 

  11. Groemer, H. (1982). On the average size of polytopes in a convex set.Geom. Ded. 13, 47–62.

    Google Scholar 

  12. Hadwiger, H. (1957).Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin.

    Google Scholar 

  13. Henze, N. (1983). Random triangles in convex regions.J. Appl. Prob. 20, 111–125.

    Google Scholar 

  14. Pfiefer, R. (1982). The extrema of geometric mean values, Dissertation, University of California, Davis.

    Google Scholar 

  15. Pólya, G., and Szegö, G. (1951).Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  16. Schneider, R. (1988). Random approximation of convex sets.J. Microscopy 151, 211–227.

    Google Scholar 

  17. Schöpf, P. (1977). Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einem konvexen Körper des ℝn gewahlt werden.Monatsh. Math. 83, 331–337.

    Google Scholar 

  18. Williamson, J. H. (1962).Lebesgue Integration, Holt, Rinehart and Winston, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfiefer, R.E. Maximum and minimum sets for some geometric mean values. J Theor Probab 3, 169–179 (1990). https://doi.org/10.1007/BF01045156

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045156

Key Words

Navigation