Skip to main content
Log in

The time fractional diffusion-wave equation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

The time fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order 2β with 0<β≤1/2 or 1/2<β≤1, respectively. Using the method of the Laplace transform, it is shown that the fundamental solutions of the basic Cauchy and signalling problems can be expressed in terms of an auxiliary function M (z; β), where z is the similarity variable. Such function, which reduces to the well-known Gaussian function for β=1/2 (ordinary diffusion), is proved to be an entire function of Wright type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. Davis,The Theory of Linear Operators, Principia Press, Bloomington, Indiana (1936).

    Google Scholar 

  2. Tables of Integral Transforms, Vol. 2, Ch. 13, edited by A. Erdélyi, McGraw-Hill, New York (1954).

    Google Scholar 

  3. I. M. Cel'fand and G. E. Shilov,Generalized Functions, Vol. 1, Academic press, New York (1964).

    Google Scholar 

  4. M. Caputo,Elasticità e Dissipazione, Zanichelli, Bologna (1969).

    Google Scholar 

  5. K. B. Oldham and J. Spanier,The Fractional Calculus, Academic Press, New York (1974).

    Google Scholar 

  6. Fractional Calculus and Its Applications. Lecture Notes in Mathematics, Vol. 457, edited by B. Ross, Springer Verlag, Berlin (1975).

    Google Scholar 

  7. A. C. McBride,Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes in Mathematics, Vol. 31, Pitman, London (1979).

    Google Scholar 

  8. Fractional Calculus, Research Notes in Mathematics, Vol. 138, edited by A. C. McBride and G. F. Roach, Pitman, London (1985).

    Google Scholar 

  9. Yu. I. Babenko,Heat and Mass Transfer [in Russian], Khimiya Press, Leningrad (1986).

    Google Scholar 

  10. S. G. Samko, A. A. Kilbas, and O. I. Marichev,Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam (1993) (Engl. Transl. from Russian, Nauka i Tekhnika, Minsk (1987)).

    Google Scholar 

  11. Univalent Functions, Fractional Calculus, and Their Applications, edited by H. M. Srivastava and S. Owa, Ellis Horwood, Chichester (1989).

    Google Scholar 

  12. Fractional Calculus and Its Applications, edited by K. Nishimoto, Nihon University, Tokyo (1990).

    Google Scholar 

  13. K. Nishimoto,An Essence of Nishimoto's Fractional Calculus, Descartes Press, Koriyama (1991).

    Google Scholar 

  14. R. Gorenflo and S. Vessella,Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, Vol. 1461, Springer Verlag, Berlin (1991).

    Google Scholar 

  15. K. S. Miller and B. Ross,An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

    Google Scholar 

  16. Recent Advances in Fractional Calculus, edited by R. N. Kalia, Global Publ., Sauk Rapids, Minnesota (1993).

    Google Scholar 

  17. V. Kiryakova,Generalized Fractional Calculus and Applications, Pitman research notes in mathematics Vol. 301 Longman, Harlow, U.K. (1994).

    Google Scholar 

  18. Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, and V. Kiryakova, Science Culture Technology, Singapore (1995), in press.

    Google Scholar 

  19. M. Caputo and F. Mainardi,Pure Appl. Geophys.,91, 134 (1971).

    Google Scholar 

  20. M. Caputo and F. Mainardi,Riv. Nuovo Cimento, Ser. II,1, 161 (1971).

    Google Scholar 

  21. P. W. Buchen and F. Mainardi,J. Mécanique,14, 597 (1975).

    Google Scholar 

  22. F. Mainardi and H. Buggisch, Nonlinear deformation waves, edited by U. Nigul and Engelbrecht, Springer Verlag, Berlin, (1983), p. 87.

    Google Scholar 

  23. F. Mainardi and E. Bonetti,Rheol. Acta, Suppl.,26, 64 (1988).

    Google Scholar 

  24. F. Mainardi, “Nonlinear waves in solids,” in:IUTAM Symposium edited by J. L. Wegner and F. R. Norwood, ASME/AMR, Fairfield, New Jersey (1995), p. 93; F. Mainardi,Appl. Mech. Rev.,46, 549 (1993).

    Google Scholar 

  25. F. Mainardi,J. Alloys Compounds.,211/212, 534 (1994).

    Google Scholar 

  26. F. Mainardi,Waves and Stability in Continuous Media, edited by S. Rionero and T. Ruggeri, World Scientific, Singapore (1994), p. 246.

    Google Scholar 

  27. F. Mainardi, in:Proc. 12th IMACS World Congress edited by W. F. Ames,1, Georgia Tech., Atlanta (1994), p. 329.

    Google Scholar 

  28. F. Mainardi and M. Tomirotti, in:Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, and V. Kiryakova, Science Culture Technology, Singapore (1995), in press.

    Google Scholar 

  29. F. Mainardi,Chaos, Solitons and Fractals. (1995), in press.

  30. M. Caputo,J. Acoust. Soc. Am.,56, 897 (1974).

    Google Scholar 

  31. Yu. N. Rabotnov,Elements of Hereditary Mechanics, MIR Publ., Moscow (1980). (Engl. Transl. from Russian, Nauka, Moscow (1977)).

    Google Scholar 

  32. A. Le Méahuté,J. Stat. Phys.,36, 665 (1984).

    Google Scholar 

  33. P. J. Torvik and R. L. Bagley,J. Appl. Mech. (Trans. ASME),51, 294 (1984).

    Google Scholar 

  34. R. C. Koeller,J. Appl. Mech. (Trans. ASME),51, 299 (1984).

    Google Scholar 

  35. R. R. Nimatullin,Phys. Status Solidi B,124, 389 (1984).

    Google Scholar 

  36. R. R. Nigmatullin,Phys. Status Solidi B,133, 425 (1986).

    Google Scholar 

  37. R. Bagley and P. J. Torvik,J. Rheol.,30, 133 (1986).

    Google Scholar 

  38. W. Wyss,J. Math. Phys.,27, 2782 (1986).

    Google Scholar 

  39. W. R. Schneider and W. Wyss,J. Math. Phys.,30, 134 (1989).

    Google Scholar 

  40. W. R. Young, A. Pumir, and Y. Pomeau,Phys. Fluids,A1, 462 (1989).

    Google Scholar 

  41. U. J. Choi and R. C. MacCamy,J. Math. Anal. Appl.,139, 448 (1989).

    Google Scholar 

  42. T. F. Nonnenmacher,J. Phys A: Math. Gen.,23, L697 (1990).

    Google Scholar 

  43. T. F. Nonnenmacher and W. G. Glöckle,Phil. Mag. Lett.,64, 89 (1991).

    Google Scholar 

  44. L. Gaul, P. Klein, and S. Kempfle,Mech. Syst. Signal Process.,5, 81 (1991).

    Google Scholar 

  45. N. Sugimoto,J. Fluid Mech.,225, 631 (1991).

    Google Scholar 

  46. R. R. Nigmatullin, “The physics of fractional calculus and its realization on fractal structures,” Doctoral Thesis, Kazan University (1992).

  47. M. Giona and H. E. Roman,Physica A,185, 82 (1992).

    Google Scholar 

  48. R. Lenormand, “Use of fractional derivatives for fluid flow in heterogeneous media,” Preprint (1992). (Paper presented at the 3rd European Conf. on the Mathematics of Oil Recovery, Delft, The Netherlands.)

  49. M. Ochmann and S. Makarov,J. Acoust. Soc. Am.,94, No. 6, 3392 (1993).

    Google Scholar 

  50. M. Caputo,Rend. Fis. Acc. Lincei., Ser. IX,4, 279 (1993).

    Google Scholar 

  51. Ch. Friedrich,J. Non-Newtonian Fluid Mech.,46, 307 (1993).

    Google Scholar 

  52. G. M. Zaslavsky,Physica D,76, No. 1–3, 110 (1994).

    Google Scholar 

  53. I. Podlubny, “The Laplace transform method for linear differential equations of fractional order,” Preprint Inst. Exp. Phys., Kosice, UEF-02-94 (1994).

  54. I. Podlubny, in:Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, and V. Kiryakova, Science Culture Technology, Singapore (1995), in press.

    Google Scholar 

  55. R. Gorenflo and R. Rutman, in:Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, and V. Kiryakova, Science Culture Technology, Singapore (1995), in press.

    Google Scholar 

  56. Higher Transcendental Functions, Vol. 3, Ch. 18, edited by A. Erdélyi, McGraw-Hill, New York (1955).

    Google Scholar 

  57. C. M. Bender and S. A. Orszag,Advanced Mathematical Methods for Scientists and Engineers, Ch. 3, McGraw-Hill, Singapore (1987).

    Google Scholar 

Download references

Authors

Additional information

Department of Physics, University of Bologna, Italy. Published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 38, Nos. 1–2, pp. 20–36, January–February, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainardi, F. The time fractional diffusion-wave equation. Radiophys Quantum Electron 38, 13–24 (1995). https://doi.org/10.1007/BF01051854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051854

Keywords

Navigation