Skip to main content
Log in

Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper, we study nonlinear axisymmetric waves in a circular cylindrical rod composed of a compressible Mooney-Rivlin material. The aim is to derive simplified model equations in the far field which include both nonlinearity and dispersion. We consider disturbances in an initially pre-stressed rod. For long finite-amplitude waves, the Korteweg-de Vries (KdV) equation arises as the model equation. However, in a critical case, the coefficient of the dispersive term in the KdV equation vanishes. As a result, the dispersion cannot balance the nonlinearity. On the other hand, the latter has the tendency to make the wave profile steeper and steeper. The attention is then focused on finite-length and finite-amplitude waves. A new nonlinear dispersive equation which includes extra nonlinear terms involving second-order and third-order derivatives is derived as the model equation. In the case that the rod is composed of a compressible neo-Hookean material, that equation is further reduced to the Benjamin-Bona-Mahony (BBM) equation, which is known as an alternative to the KdV equation for modelling long finite-amplitude waves. To the author's knowledge, it is the first time that the BBM equation is found to arise as a model equation for finite-length and finite-amplitude waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green, W. A.: Dispersion relations for elastic waves in bars. In: Progress in solid mechanics, Vol. I (Sneddon, I. N., Hill, R., eds.), pp. 128–153. Amsterdam: North-Holland 1960.

    Google Scholar 

  2. Achenbach, J. D.: Wave propagation in elastic solids. Amsterdam: North-Holland 1973.

    Google Scholar 

  3. Wright, T. W.: Nonlinear waves in rods. In: Proceedings of the IUTAM Symposium on Finite Elasticity (Carlson, D. E., Shields, R. T., eds.), pp. 423–443. The Hague: Martinus Nijhoff 1982.

    Google Scholar 

  4. Wright, T. W.: Nonlinear waves in rods: results for incompressible materials. Stud. Appl. Math.72, 149–160 (1985).

    Google Scholar 

  5. Coleman, B. D., Newman, D. C.: On waves in slender elastic rods. Arch. Rat. Mech. Anal.109, 39–61 (1990).

    Google Scholar 

  6. Nariboli, G. A.: Nonlinear longitudinal dispersive waves in elastic rods. J. Math. Phys. Sci.4, 64–73 (1970).

    Google Scholar 

  7. Soerensen, M. P., Christiansen, P. L., Lomdahl, P. S.: Solitary waves on nonlinear rods I. J. Acoust. Soc. Am.78, 871–879 (1984).

    Google Scholar 

  8. Soerensen, M. P., Christiansen, P. L., Lomdahl, P. S., Skovgaard, O.: Solitary waves on nonlinear rods II. J. Acoust. Soc. Am.81, 1718–1722 (1987).

    Google Scholar 

  9. Clarkson, P. A., LeVeque, R. J., Saxton, R.: Solitary-wave interaction in elastic rods. Stud. Appl. Math.75, 95–122 (1986).

    Google Scholar 

  10. Cohen, H., Dai, H.-H.: Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves. Acta Mech.100, 223–239 (1993).

    Google Scholar 

  11. Cohen, H.: A non-linear theory of elastic directed curves. Int. J. Eng. Sci.4, 511–524 (1966).

    Google Scholar 

  12. Green, A. E., Naghdi, P. M., Wenner, M. L.: On the theory of rods. Part I. Derivations from three-dimensional equations. Proc. R. Soc. London Ser. A337, 451–483 (1974).

    Google Scholar 

  13. Green, A. E., Naghdi, P. M., Wenner, M. L.: On the theory of rods. Part II. Developments by direct approach. Proc. R. Soc. London Ser. A337, 485–507 (1974).

    Google Scholar 

  14. Antman, S. S.: The theory of rods. In: Handbuch der Physik, Bd. VI a/2. Berlin Göttingen Heidelberg: Springer 1972.

    Google Scholar 

  15. Benjamin, T. B., Bona, J. L., Mahony, J. J.: Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. London Ser. A227, 47–78 (1972).

    Google Scholar 

  16. Ciarlet, P. G.: Mathematical elasticity. Berlin Heidelberg New York: Springer 1987.

    Google Scholar 

  17. Truesdell, C., Noll, W.: Non-linear field theories of mechanics. In: Handbuch der Physik, Bd. III/3. Berlin Heidelberg New York: Springer 1965.

    Google Scholar 

  18. Ogden, R. W.: Non-linear elastic deformations. New York Chichester Toronto: Ellis Horwood 1984.

    Google Scholar 

  19. Jeffrey, A., Kawahara, T.: Asymptotic methods in nonlinear wave theory. London: Pitman 1982.

    Google Scholar 

  20. Drazin, P. G., Johnson, R. S.: Solitons: an introduction. Cambridge New York: Cambridge University Press 1989.

    Google Scholar 

  21. Olver, P. J.: Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc.85, 143–160 (1979(.

    Google Scholar 

  22. Peregrine, D. H.: Calculations of the development of an undular bore. J. Fluid Mech.25, 321–330 (1966).

    Google Scholar 

  23. Eilbeck, J. C., McGuire, G. R.: Numerical study of the regularized long wave equation. Part I. Numerical methods. J. Comput. Phys.19, 43–57 (1975).

    Google Scholar 

  24. Bona, J. L., Pritchard, W. G., Scott, L. R.: Numerical schemes for a model for nonlinear dispersive waves. J. Comput. Phys.60, 167–186 (1985).

    Google Scholar 

  25. Guo, B.-Y., Manoranjah, V. S.: A spectral method for solving the RLW equation. IMA J. Numer. Anal.5, 307–318 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H.H. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mechanica 127, 193–207 (1998). https://doi.org/10.1007/BF01170373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170373

Keywords

Navigation