Skip to main content
Log in

A Fredholm determinant formula for Toeplitz determinants

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove a formula expressing a generaln byn Toeplitz determinant as a Fredholm determinant of an operator 1 −K acting onl 2 (n,n+1,...), where the kernelK admits an integral representation in terms of the symbol of the original Toeplitz matrix. The proof is based on the results of one of the authors, see [14], and a formula due to Gessel which expands any Toeplitz determinant into a series of Schur functions. We also consider 3 examples where the kernel involves the Gauss hypergeometric function and its degenerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [1] J. Baik, P. Deift, K. Johansson,On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc.,12, 1999, no. 4, 1119–1178 (preprint version math.CO/9810105).

    Google Scholar 

  • [2] E. L. Basor and H. Widom,On a Toeplitz determinant identity of Borodin and Okounkov, in this volume (preprint version math.FA/9909010).

  • [3] A. Borodin, A. Okounkov, and G. Olshanski,On asymptotics of the Plancherel measures for symmetric groups, math.CO/9905032.

  • [4] A. Borodin and G. Olshanski,Point processes and the infinite symmetric group, Math. Research Lett.,5, 1998, 799–816 (preprint version math.RT/9810015).

  • [5] A. Borodin and G. Olshanski,Distribution on partitions, point processes, and the hypergeometric kernel, to appear in Comm. Math. Phys. (preprint version math.RT/9904010).

  • [6] A. Borodin and G. Olshanski,Z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles, math.CO/9905189.

  • [7] P. Deift,Integrable operators, AMS Translations,189, 69–84, 1999.

    Google Scholar 

  • [8] I. M. Gessel,Symmetric functions and P-recursiveness, J. Combin. Theory, Ser. A,53, 1990, 257–285.

    Google Scholar 

  • [9]Higher Transcendental functions, Bateman Manuscript Project, McGraw-Hill, New York, 1953.

  • [10] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov,Differential equations for quantum correlation functions, Intern. J. Mod. Phys.B4, 1990, 1003–1037.

    Google Scholar 

  • [11] K. Johansson,Discrete orthogonal polynomials and the Plancherel measure, math.CO/9906120.

  • [12] S. Kerov, G. Olshanki, and A. Vershik,Harmonic analysis on the infinite symmetric group. A deformation of the regular representation, Comptes Rend. Acad. Sci Paris, Sér. I,316, 1993, 773–778.

    Google Scholar 

  • [13] I. G. Macdonald,Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, 1995.

  • [14] A. Okounkov,Infinite wedge and measures on partitions, math.RT/9907127.

  • [15] G. Szegö,On certain hermitian forms associated with the Fourier series of a positive function, Comm. Seminaire Math de l'Univ. de Lund, tome supplementaire, dedie a Marcel Riesz, 1952, 228–237 (orGabor Szego: Collected Papers, Vol. 3 (1945–1972), Birkhäuser, 1982, 270–280).

  • [16] C. A. Tracy and H. Widom,On the distribution of the lengths of the longest monotone subsequences in random words, math.CO/9904042.

  • [17] H. Widom,Toeplitz determinants with singular generating functions, Amer. J. Math.,95, 1973, 333–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, A., Okounkov, A. A Fredholm determinant formula for Toeplitz determinants. Integr equ oper theory 37, 386–396 (2000). https://doi.org/10.1007/BF01192827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192827

Mathematical Subject Classification

Navigation