Skip to main content
Log in

The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

We analyze the computability and the complexity of various definitions of spectral radii for sets of matrices. We show that the joint and generalized spectral radii of two integer matrices are not approximable in polynomial time, and that two related quantities—the lower spectral radius and the largest Lyapunov exponent—are not algorithmically approximable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold, H. Crauel, and J.-P. Eckmann (eds.),Lyapunov Exponents, Proceedings of a Conference Held in Oberwolfach, Lecture Notes in Mathematics, vol. 1486, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  2. N. E. Barabanov, Lyapunov indicators of discrete inclusions, parts I, II, and III,Automat, i Telemekk,2 (1988), 40–46,3 (1988), 24–29, and5 (1988), 17–24 (Translation inAutomat. Remote Control).

    Google Scholar 

  3. M. Berger and Y. Wang, Bounded semigroup of matrices,Linear Algebra Appl.,166 (1992), 21–27.

    Google Scholar 

  4. V. D. Blondel and J. N. Tsitsiklis, When is a pair of matrices mortal?, Technical report LIDS-P-2314, LIDS, MIT, January 1996. To appear inInformation Processing Letters.

  5. V. D. Blondel and J. N. Tsitsiklis, Complexity of stability and controllability of elementary hybrid systems, preprint (1997).

  6. P. Bougerol, Filtre de Kalman Bucy et exposants de Lyapounov, inLyapunov Exponents (L. Arnold et al, eds.), Lecture Notes in Mathematics, vol. 1486, Springer-Verlag, Berlin, 1991, pp. 112–122.

    Google Scholar 

  7. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, vol. 15, SIAM, Philadelphia, PA, 1994.

    Google Scholar 

  8. R. Brayton and C. Tong, Constructive stability and asymptotic stability of dynamical systems,IEEE Trans. Circuits and Systems,27 (1980), 1121–1130.

    Google Scholar 

  9. J. Cohen, Subadditivity, generalized products of random matrices and operation research,SIAM Rev.,30 (1988), 69–86.

    Google Scholar 

  10. J. Cohen, H. Kesten, and M. Newman (eds.),Random Matrices and Their Applications, Contemporary Mathematics, vol. 50, American Mathematical Society, Providence, RI, 1986.

    Google Scholar 

  11. R. Darling, The Lyapunov exponent for product of infinite-dimensional random matrices, inLyapunov Exponents (L. Arnold et al., eds.), Lecture Notes in Mathematics, vol. 1486, Springer-Verlag, Berlin, 1991, pp. 206–215.

    Google Scholar 

  12. I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge,Linear Algebra Appl.,162 (1992), 227–263.

    Google Scholar 

  13. L. Elsner, The generalized spectral radius theorem: an analytic-geometric proof,Linear Algebra Appl.,220 (1995), 151–159.

    Google Scholar 

  14. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, New York, 1979.

    Google Scholar 

  15. R. Gharavi and V. Anantharam, An upper bound for the largest Lyapunov exponent of a Markovian random matrix product of nonnegative matrices, preprint (1995).

  16. G. Gripenberg, Computing the joint spectral radius,Linear Algebra Appl.,234 (1996), 43–60.

    Google Scholar 

  17. L. Gurvits, Stability of discrete linear inclusion,Linear Algebra Appl.,231 (1995), 47–85.

    Google Scholar 

  18. J. E. Hopcroft and J. D. Ullman,Formal Languages and Their Relation to Automata, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  19. R. A. Horn and C. R. Johnson,Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  20. J. Kingman, Subadditive ergodic theory,Ann. Probab.,1 (1976), 883–909.

    Google Scholar 

  21. V. S. Kozyakin, Algebraic unsolvability of problem of absolute stability of desynchronized systems,Avtomat. i Telemekh.,6 (1990), 41–47 (Translation inAutomat. Remote Control).

    Google Scholar 

  22. J. C. Lagarias and Y. Wang, The finiteness conjecture for the generalized spectral radius of a set of matrices,Linear Algebra Appl.,214 (1995), 17–42.

    Google Scholar 

  23. R. Lima and M. Rahibe, Exact Lyapunov exponent for infinite products of random matrices,J. Phys. A,27 (1994), 3427–3437.

    Google Scholar 

  24. Y. Matiyasevich and G. Sénizergues, Decision problems for semi-Thue systems with a few rules, preprint (1996).

  25. V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,Trans. Moscow Math. Soc.,19 (1968), 197–231.

    Google Scholar 

  26. C. H. Papadimitriou,Computational Complexity, Addison-Wesley, Reading, MA, 1994.

    Google Scholar 

  27. C. H. Papadimitriou and J. N. Tsitsiklis, The complexity of Markov decision processes,Math. Oper. Res.,12 (1987), 441–450.

    Google Scholar 

  28. M. Paterson, Unsolvability in 3 × 3 matrices,Stud. Appl. Math.,49 (1970), 105–107.

    Google Scholar 

  29. K. Ravishankar, Power law scaling of the top Lyapunov exponent of a product of random matrices,J. Stat. Phys.,54 (1989), 531–537.

    Google Scholar 

  30. J. Roerdink, The biennal life strategy in a random environment,J. Math. Biol.,26 (1988), 199–215.

    Google Scholar 

  31. G.-C. Rota and G. Strang, A note on the joint spectral radius,Indag. Math.,22 (1960), 379–381.

    Google Scholar 

  32. J. N. Tsitsiklis, On the stability of asynchronous iterative processes,Math. Systems Theory,20 (1987), 137–153.

    Google Scholar 

  33. J. N. Tsitsiklis and V. D. Blondel, The spectral radius of a pair of matrices is hard to compute,Proceedings of the 35th Conference on Decision and Control, Kobe, December 1996, pp. 3192–3197.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was completed while Blondel was visiting Tsitsiklis at MIT. This research was supported by the ARO under Grant DAAL-03-92-G-0115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsitsiklis, J.N., Blondel, V.D. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. Math. Control Signal Systems 10, 31–40 (1997). https://doi.org/10.1007/BF01219774

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219774

Key words

Navigation