Skip to main content
Log in

Réseaux arithmétiques et commensurateur d'après G.A. Margulis

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  • [Bai-Bor] Bailey, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442–528 (1966)

    Google Scholar 

  • [Ber] Berberian, S.: Measure and Integration. New York: Macmillan 1963

    Google Scholar 

  • [Ber-Zel] Bernstein, I.N., Zelevinski, A.V.: Representations of the Group GL(n,F) whereF is a Non-Archimedean Local Field. Russ. Math. Surv.31.3, 1–68 (1976)

    Google Scholar 

  • [Bor1] Borel, A.: Density Properties for Certain Subgroups of Semisimple Lie Groups Without Compact Factors. Ann. Math.72, 179–188 (1960)

    Google Scholar 

  • [Bor2] Borel, A.: Density and maximality of arithmetic subgroups. J. Reine Angew. Math.224, 78–89 (1966)

    Google Scholar 

  • [Bor-H.C] Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Ann. Math.75, 485–535 (1962)

    Google Scholar 

  • [Bou] Bourbaki, N.: Topological Vector Spaces. Springer: Berlin Heidelberg New York (1987), Chaps. 1–5.

    Google Scholar 

  • [Cor] Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. Math.135, 165–182 (1992)

    Google Scholar 

  • [Del-Mos] Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and nonlattice integral monodromy. I.H.E.S. Publ. Math.63, 5–90 (1986)

    Google Scholar 

  • [Edw] Edwards, R.E.: Functional Analysis. New York: Holt, Rinehart and Winston 1965

    Google Scholar 

  • [For-Pro] Formanek, E., Procesi, C.: The Automorphism Group of a Free Group Is Not Linear. J. Algebra149, 494–499 (1992)

    Google Scholar 

  • [Fur1] Furstenberg, H.: A Poisson formula for semisimple Lie groups. Ann. Math.77, 335–383 (1963)

    Google Scholar 

  • [Fur2] Furstenberg, H.: Boundary Theory and Stochastic Processes in Homogeneous Spaces. In: Moore, C.C. (ed.) Harmonic analysis on homogeneous spaces. (Proc. Symp. on Pure and Appl. Math., vol. 26, Williamstown, Mass., 1972, pp. 193–229

  • [Gar-Rag] Garland, H., Raghunathan, M.S.: Fundamental domains for lattices inR-rank 1, semisimple Lie groups. Ann. Math.92, 279–326 (1970)

    Google Scholar 

  • [Gre] Greenleaf, F.: Invariant Means on Topological Groups. Princeton: van Nostrand 1969

    Google Scholar 

  • [Gro-PS] Gromov, M., Piatetski-Shapiro, I.I.: Non-arithmetic groups in Lobachevsky spaces. I.H.E.S. Publ. Math.66, 93–103 (1988)

    Google Scholar 

  • [Kaz1] Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition. I.C.M.2, 321–325 (1970)

    Google Scholar 

  • [Kaz2] Kazhdan, D.: On arithmetic varieties. In: Gelfand, I.M. (ed.) Lie groups and their representations. Akadémiai Kiadó, Budapest 1975

    Google Scholar 

  • [Kaz3] Kazhdan, D.: On arithmetic varieties II. Isr. J. Math.44, 139–159 (1983)

    Google Scholar 

  • [Kaz4] Kazhdan, D.: Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl.1, 63–65 (1967)

    Google Scholar 

  • [Mañ] Mañé, R.: Teoria ergódica. IMPA, Projeto Euclides 1983

  • [Mar1] Margulis, G.A.: Discrete Groups of Motions of Manifolds of Nonpositive Curvature. I.C.M.2, 21–34 (1974); A.M.S. Transl.109, 33–45 (1977)

    Google Scholar 

  • [Mar2] Margulis, G.A.: Arithmeticity of Irreducible Lattices in Semisimple Groups of Rank Greater than One. Invent. Math.76, 93–120 (1984)

    Google Scholar 

  • [Mar3] Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergeb. Math. Grenzgebiete, 3. Folge, Bd. 17, Berlin Heidelberg New York: Springer 1991

    Google Scholar 

  • [Moo] Moore, C.C.: Ergodicity of flows on homogeneous spaces. Ann. J. Math.88, 154–178 (1966)

    Google Scholar 

  • [Mos1] Mostow, G.D.: Lectures on discrete subgroups of Lie groups. Notes by Gopal Prasad. (Lect. Math. Phys., vol. 48, Bombay: Tata Institute 1969

    Google Scholar 

  • [Mos2] Mostow, G.D.: The Rigidity of Locally Symmetric Spaces. I.C.M.2, 187–197 (1970)

    Google Scholar 

  • [Mos3] Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. Ann. Math. Stud., vol. 78, Princeton: Princeton University Press 1973

    Google Scholar 

  • [Mos4] Mostow, G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math.86, 171–276 (1980)

    Google Scholar 

  • [Nor-Rag] Nori, M.V., Raghunathan, M.S.: On conjugation of locally symmetric arithmetic varieties. (Preprint)

  • [Pie] Pier, J.-P.: Amenable Locally Compact Groups. New York: Wiley 1984

    Google Scholar 

  • [PS-Saf] Piatetski-Shapiro, I.I., Safarevic: Izv. Akad. Nauk. S.S.S.R.30, 671–705 (1966)

    Google Scholar 

  • [Rag] Raghunathan, M.: Discrete Subgroups of Lie Groups. Berlin Heidelberg New York: Springer 1972

    Google Scholar 

  • [San] Sansuc, I.-I.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math.327, 12–80 (1981)

    Google Scholar 

  • [Sav] Savin, G.: Limit multiplicities of cusp forms. Invent. Math.95, 149–159 (1989)

    Google Scholar 

  • [Sch] Schoen, R. (Preprint)

  • [Ser] Serre, J.-P.: Lie Algebras and Lie Groups. Reading, Mass: Benjamin 1965

    Google Scholar 

  • [Zim] Zimmer, R.: Ergodic Theory and Semisimple Groups. Boston Basel Stuttgart: Birkhäuser 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 5-I-1993

En hommage à Armand Borel avec notre admiration

Rights and permissions

Reprints and permissions

About this article

Cite this article

A'Campo, N., Burger, M. Réseaux arithmétiques et commensurateur d'après G.A. Margulis. Invent Math 116, 1–25 (1994). https://doi.org/10.1007/BF01231555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231555

Navigation