Skip to main content
Log in

Cellular algebras

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A class of associative algebras (“cellular”) is defined by means of multiplicative properties of a basis. They are shown to have cell representations whose structure depends on certain invariant bilinear forms. One thus obtains a general description of their irreducible representations and block theory as well as criteria for semisimplicity. These concepts are used to discuss the Brauer centraliser algebras, whose irreducibles are described in full generality, the Ariki-Koike algebras, which include the Hecke algebras of type A and B and (a generalisation of) the Temperley-Lieb and Jones' recently defined “annular” algebras. In particular the latter are shown to be non-semisimple when the defining paramter δ satisfies\(\gamma _{g(n)} (\tfrac{{ - \delta }}{2}) = 1\), where γ n is then-th Tchebychev polynomial andg(n) is a quadratic polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AK] S. Ariki, K. Koike: A Hecke algebra of (ℤ/rℤ)/Sn and construction of its irreducible representations. Adv. Math.106, 216–243 (1994)

    Google Scholar 

  • [B] R. Brauer: On algebras which are connected with the semisimple continuous groups. Ann. Math.38, 854–887 (1937)

    Google Scholar 

  • [BV] D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259, 153–199 (1982)

    Google Scholar 

  • [Ca] R. Carter: Finite groups of Lie type: conjugacy classes and complex characters. Wiley, Chichester New York, 1985

    Google Scholar 

  • [CPS] E. Cline, B. Parshall, L. Scott: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math.391, 85–99 (1988)

    Google Scholar 

  • [Cu] C. W. Curtis: Representations of finite groups of Lie type. Bull. A.M.S.1, 721–757 (1979)

    Google Scholar 

  • [D] R. Dipper: Polynomial Representations of finite general linear groups in nondescribing characteristic. Prog. in Math.95, 343–370 (1991)

    Google Scholar 

  • [DJ1] R. Dipper, G. James: Representations of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. (3)52, 20–52 (1986)

    Google Scholar 

  • [DJ2] R. Dipper, G.D. James: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. (3)54, 57–82 (1987)

    Google Scholar 

  • [DJ3] R. Dipper, G.D. James: Identification of the irreducible modular representations of GL n (q). J. Algebra,104, 266–288 (1986)

    Google Scholar 

  • [DJM] R. Dipper, G.D. James, G.E. Murphy: Hecke algebras of typeB n at roots of unity (Preprint 1994)

  • [Dr] V.G. Drinfeld: Quantum groups. Proc. Int. Cong. Math. Berkeley pp. 798–820 1986 (1987)

  • [FG] S. Fishel, I. Grojnowski: Canonical bases for the Brauer centralizer algebra. Math. Res. Letters2, 1–16 (1995)

    Google Scholar 

  • [G] M. Geck: On the decomposition Numbers of the finite unitary groups in non-defining characteristic. Math. Z.207, 83–89 (1991)

    Google Scholar 

  • [GM] A.M. Garsia, T.J. McLarnen: Relations between Young's natural and the Kazhdan Lusztig representations ofS n . Adv. Math.69, 32–92 (1988)

    Google Scholar 

  • [Gr] J. Graham: Modular representations of Hecke algebras and related algebras. PhD Thesis, Sydney University 1995

  • [GW] F.M. Goodman, H. Wenzl: The Temperley-Lieb algebra at roots of unity. Pac. J. Math.161, 307–334 (1993)

    Google Scholar 

  • [HL1] R.B. Howlett, G.I. Lehrer: Induced cuspidal representations and generalised Hecke rings. Invent. Math.58, 37–64 (1980)

    Google Scholar 

  • [HL2] R.B. Howlett, G.I. Lehrer: Representations of generic algebras and finite groups of Lie type. Trans. A.M.S.280, 753–777 (1983)

    Google Scholar 

  • [HW] P. Hanlon, D. Wales: A tower construction for the radical in Brauer's centraliser algebras. J. Algebra164, 773–830 (1994)

    Google Scholar 

  • [J1] V.F.R. Jones: A polynomial invariant for knots via von Neumann algebras. Bull. A.M.S.12, 103–111 (1985)

    Google Scholar 

  • [J2] V.F.R. Jones: Hecke algebra representations of braid groups and link polynomials. Ann. Math.126, 335–388 (1987)

    Google Scholar 

  • [J3] V.F.R. Jones: A quotient of the affine Hecke algebra in the Brauer algebra. L'Enseignement Math.40, 313–344 (1994)

    Google Scholar 

  • [J4] V.F.R. Jones: Subfactors and Knots. C.B.M.S.80, A.M.S., Providence RI 1991

    Google Scholar 

  • [Ji] M. Jimbo: A q-analogue ofU(gl(n+1)), Hecke algebra and the Yang-Baxeter equation. Lett. Math. Phys.11, 247–252 (1986)

    Google Scholar 

  • [KL1] D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras. Invent. math.53, 165–184 (1979)

    Google Scholar 

  • [KL2] D. Kazhdan, G. Lusztig: Schubert varieties and Poincaré duality. Proc. Sym. Pure Math. A.M.S.36, 185–203 (1980)

    Google Scholar 

  • [Kn] D. Knuth: The art of computer programming. Addison-Wesley, Reading MA 1975

    Google Scholar 

  • [L] G.I. Lehrer: A survey of Hecke algebras and the Artin braid groups. Contemp. Math.78, 365–385 (1988)

    Google Scholar 

  • [Lu1] G. Lusztig: Characters of reductive groups over a finite field. Ann. Math. Studies107, Princeton U.P., NJ, 1984

    Google Scholar 

  • [Lu2] G. Lusztig: Left cells in Weyl groups, in Springer L.N.M.1024, 99–111, Berlin, Heidelberg, New York, 1983

  • [Lu3] G. Lusztig: Finite dimensional Hopf algebras arising from quantum groups. J.A.M.S.3, 257–296 (1990)

    Google Scholar 

  • [M] G.E. Murphy: On the representation theory of the symmetric groups and associated Hecke algebras. J. Algebra152, 492–513 (1992)

    Google Scholar 

  • [Sh] J-Y. Shi: The Kazhdan-Lusztig cells in certain affine Weyl groups, Springer L.N.M.1179, Berlin, Heidelberg, New York, 1988

  • [V] D. Vogan: A generalised τ-invariant for the primitive spectrum of a semisimple Lie algebra. Math. Ann.242, 209–224 (1979)

    Google Scholar 

  • [W] H. Wenzl: On the structure of Brauer's centralizer algebras. Ann. Math.128, 173–193 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 27-III-1995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, J.J., Lehrer, G.I. Cellular algebras. Invent Math 123, 1–34 (1996). https://doi.org/10.1007/BF01232365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232365

Keywords

Navigation