Skip to main content
Log in

Gaussian kernels have only Gaussian maximizers

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A Gaussian integral kernelG(x, y) onR n×R n is the exponential of a quadratic form inx andy; the Fourier transform kernel is an example. The problem addressed here is to find the sharp bound ofG as an operator fromL p(R n) toL p(R n) and to prove that theL p(R n) functions that saturate the bound are necessarily Gaussians. This is accomplished generally for 1<pq<∞ and also forp>q in some special cases. Besides greatly extending previous results in this area, the proof technique is also essentially different from earlier ones. A corollary of these results is a fully multidimensional, multilinear generalization of Young's inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babenko, K.I.: An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSR Ser. Mat.25, 531–542; (1961) English transl. Am. Math. Soc. Transl. (2)44, 115–128 (1965)

    Google Scholar 

  2. Beckner, W.: Inequalities in Fourier analysis. Ann. Math.102, 159–182 (1975)

    Google Scholar 

  3. Beckner, W.: Inequalities in Fourier analysis onR n. Proc. Natl. Acad. Sci. USA72, 638–641 (1975)

    Google Scholar 

  4. Brascamp, H.J., Lieb, E.H.: Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. Math.20, 151–173 (1976)

    Google Scholar 

  5. Carlen, E.: Superadditivity of Fisher's information and logarithmic Sobolev inequalities. J. Funct. Anal. (in press)

  6. Carlen, E., Loss, M.: Extremals of functionals with competing symmetries. J. Funct. Anal.88, 437–456 (1990)

    Google Scholar 

  7. Coifman, R., Cwikel, M., Rochberg, R., Sagher, Y., Weiss, G.: Complex interpolation for families of Banach spaces. Am. Math. Soc. Proc. Symp. Pure Math.35, 269–282 (1979)

    Google Scholar 

  8. Davies, E.B., Gross, L., Simon, B.: Hypercontractivity: a bibliographic review. Proceedings of the Hoegh-Krohn memorial conference. Albeverio, S. (ed.) Cambridge: Cambridge University Press, 1990

    Google Scholar 

  9. Epperson, Jr., J.B.: The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel. J. Funct. Anal.87, 1–30 (1989)

    Google Scholar 

  10. Glimm, J.: Boson fields with nonlinear self-interaction in two dimensions. Commun. Math. Phys.8, 12–25 (1968)

    Google Scholar 

  11. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math.97, 1061–1083 (1975)

    Google Scholar 

  12. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. See Theorem 202 on p. 148. Cambridge: Cambridge University Press 1959

    Google Scholar 

  13. Janson, S.: On hypercontractivity for multipliers on orthogonal polynomials. Ark. Mat.21, 97–110 (1983)

    Google Scholar 

  14. Lieb, E.H.: Proof of an entropy conjecture of Wehrl. Commun. Math. Phys.62, 35–41 (1978)

    Google Scholar 

  15. Lieb, E.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys.31, 594–599 (1990)

    Google Scholar 

  16. Nelson, E.: A quartic interaction in two dimensions. in: Mathematical theory of elementary particles. Goodman, R., Segal, I. (eds.), pp. 69–73. Cambridge: M.I.T. Press 1966

    Google Scholar 

  17. Nelson, E.: The free Markov field. J. Funct. Anal.12, 211–227 (1973)

    Google Scholar 

  18. Neveu, J.: Sur l'esperance conditionelle par rapport à un mouvement Brownien. Ann. Inst. H. Poincaré Sect. B. (N.S.)12, 105–109 (1976)

    Google Scholar 

  19. Simon, B.: A remark on Nelson's best hypercontractive estimates. Proc. Am. Math. Soc.55, 376–378 (1976)

    Google Scholar 

  20. Segal, I.: Construction of non-linear local quantum processes: I. Ann. Math.92, 462–481 (1970)

    Google Scholar 

  21. Titchmarsh, E.C.: A contribution to the theory of Fourier transforms. Proc. London Math. Soc. Ser. 2,23, 279–289 (1924)

    Google Scholar 

  22. Weissler, F.B.: Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup. J. Funct. Anal.32, 102–121 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 19-XII-1989

Work partially supported by U.S. National Science Foundation grant PHY-85-15288-A03

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H. Gaussian kernels have only Gaussian maximizers. Invent Math 102, 179–208 (1990). https://doi.org/10.1007/BF01233426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233426

Keywords

Navigation