Skip to main content
Log in

Definitions of quasiconformality

  • Published:
Inventiones mathematicae Aims and scope

Summary

We establish that the infinitesimal “H-definition” for quasiconformal mappings on Carnot groups implies global quasisymmetry, and hence the absolute continuity on almost all lines. Our method is new even inR n where we obtain that the “limsup” condition in theH-definition can be replaced by a “liminf” condition. This leads to a new removability result for (quasi)conformal mappings in Euclidean spaces. An application to parametrizations of chord-arc surfaces is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala K., Koskela P.: Quasiconformal mappings and global integrability of the derivative. J. Anal. Math.57, 203–220 (1991)

    Google Scholar 

  2. Bojarski B.: Remarks on Sobolev imbedding inequalities, In Proc. of the Conference on Complex Analysis, Joensuu 1987. Lecture Notes in Math. 1351, Springer Verlag 1988

  3. Coornaert M.: Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math.159, 241–270 (1993)

    Google Scholar 

  4. David G., Semmes S.: Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc.337, 855–889 (1993)

    Google Scholar 

  5. Eichmann R.: Variationsprobleme auf der Heisenberggruppe, Lizentiatsarbeit. Universität Bern (1990)

  6. Federer H.: Geometric Measure Theory, Springer, New York, 1969.

    Google Scholar 

  7. Folland G.B., Stein E.M.: Hardy spaces on homogeneous groups, Princeton University Press, Princeton, New Jersey, 1982

    Google Scholar 

  8. Gehring F.W.: The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math.281, 1–28 (1960)

    Google Scholar 

  9. Gehring F.W.: Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J.9, 137–150 (1962)

    Google Scholar 

  10. Ghys E., de la Harpe P.: Sur les Groupes Hyperboliques d'après Mikhaer Gromov, Birkhäuser, Progress in Mathematics, Boston-Basel-Berlin, 1990

    Google Scholar 

  11. Gromov M., Pansu P.: Rigidity of Lattices: An Introduction, Geometric Topology: Recent Developments. Lecture Notes in Mathematics 1504, Springer-Verlag. Berlin-New York-Heidelberg, 1991

    Google Scholar 

  12. He Z.-X., Schramm O.: Rigidity of circle domains whose boundary has σ-finite linear measure, Invent. Math.115, 297–310 (1994)

    Google Scholar 

  13. Heinonen J.: A capacity estimate on Carnot groups, Bull. Sci. Math. Fr. (to appear)

  14. Heintze E.: On homogeneous manifolds of negative curvature, Math. Ann.211, 23–34 (1974)

    Google Scholar 

  15. Korányi A., Reimann H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. in Math. (to appear)

  16. Loewner C.: On the conformal capacity in space. J. Math. Mech.8, 411–414 (1959)

    Google Scholar 

  17. Martio O., Näkki R.: Continuation of quasiconformal mappings, (in Russian), Sib. Mat. Zh.28, 162–170 (1987), English translation: Siberian Math. J.28, 645–652 (1988)

    Google Scholar 

  18. Mattila P.: Geometry of sets and measures in Euclidean spaces, to appear in Cambridge Univ. Press

  19. Mitchell J.: On Carnot-Carathéodory metrices, J. Diff. Geom.21, 35–45 (1985)

    Google Scholar 

  20. Mostow G.D.: Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, New Jersey, 1973

    Google Scholar 

  21. Mostow G.D.: A remark on quasiconformal mappings on Carnot groups. Michigan Math. J.41, 31–37 (1994)

    Google Scholar 

  22. Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math.129, 1–60 (1989)

    Google Scholar 

  23. Pansu P.: Dimension conforme et sphère à l'infini des veriétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math.,14, 177–212 (1989)

    Google Scholar 

  24. Paulin F.: Un groupe hyperbolique est déterminé par son bord, preprint (1993)

  25. Reimann H.M.: An estimate for pseudoconformal capacities on the sphere, Ann. Acad. Sci. Fenn. Ser. A I Math14, 315–324 (1989)

    Google Scholar 

  26. Semmes S.: Chord-arc surfaces with small constant. II. Good parameterizations, Adv. in Math.88, 170–199 (1989)

    Google Scholar 

  27. Tukia P., Väisälä J.: Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5, 97–114 (1980)

    Google Scholar 

  28. Väisälä J. Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math.229, Springer-Verlag, Berlin-Heidelberg-New York, 1971

    Google Scholar 

  29. Väisälä J.: Quasisymmetric embeddings in euclidean spaces, Trans. Amer. Math. Soc.264, 191–204 (1981)

    Google Scholar 

  30. Väisälä J. Quasisymmetric maps of products of curves into the plane, Rev. Roumaine Math. Pures Appl.33, 147–156 (1988)

    Google Scholar 

  31. Ziemer W.P.: Extremal length and p-capacity, Michigan Math. J.16, 43–51 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 25-IV-1994 & 9-VI-1994

Both authors supported in part by NSF. The first author also acknowledges the support of the Academy of Finland and the Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, J., Koskela, P. Definitions of quasiconformality. Invent Math 120, 61–79 (1995). https://doi.org/10.1007/BF01241122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01241122

Keywords

Navigation