Skip to main content
Log in

Rates of convergence for the approximation of dual shift-invariant systems in ℓ2(ℤ)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A shift-invariant system is a collection of functions {gm,n} of the form gm,n(k)=gm(k−an). Such systems play an important role in time-frequency analysis and digital signal processing. A principal problem is to find a dual system γm,n(k)=γm(k−an) such that each functionf can be written asf= ∑〈f, γm,n〉gm,n. The mathematical theory usually addresses this problem in infinite dimensions (typically in L2 (ℝ) or ℓ2(ℤ)), whereas numerical methods have to operate with a finite-dimensional model. Exploiting the link between the frame operator and Laurent operators with matrix-valued symbol, we apply the finite section method to show that the dual functions obtained by solving a finite-dimensional problem converge to the dual functions of the original infinite-dimensional problem in ℓ2(ℤ). For compactly supported gm, n (FIR filter banks) we prove an exponential rate of convergence and derive explicit expressions for the involved constants. Further we investigate under which conditions one can replace the discrete model of the finite section method by the periodic discrete model, which is used in many numerical procedures. Again we provide explicit estimates for the speed of convergence. Some remarks on tight frames complete the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, J.J. and Li, S. (1993). MRA frames with applications, InICASSP'93, 304–307, Mineapolis, April 1993.

    Google Scholar 

  2. Benedetto, J.J. and Treiber, O. Wavelet frames: Multiresolution analysis and extension principles, In Debnath, L., Ed.,Wavelet Transforms and Time-Frequency Signal Analysis, to appear.

  3. Benedetto, J.J. and Walnut, D. (1994). Gabor frames for L2 and related spaces, In Benedetto, J.J. and Frazier, M., Eds.,Wavelets-Mathematics and Applications, 97–162, CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Bölcskei, H. A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported,J. Four. Anal. Appl., to appear.

  5. Bölcskei, H. and Hlawatsch, F. (1998). Oversampled modulated filter banks. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 295–322.

    Google Scholar 

  6. Böttcher, A. and Silbermann, B. (1990).Analysis of Toeplitz Operators. Springer-Verlag, Berlin.

    Google Scholar 

  7. Casazza, P.G. and Christensen, O. Approximation of the inverse frame operator and applications to Weyl-Heisenberg frames,J. Approx. Theory, accepted for publication.

  8. Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis,IEEE Trans. Info. Theory,36, 961–1005.

    Google Scholar 

  9. Daubechies, I. (1992).Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM.

  10. Daubechies, I., Landau, H., and Landau, Z. (1995). Gabor time-frequency lattices and the Wexler-Raz identity,J. Four. Anal. Appl.,1(4), 437–478.

    Google Scholar 

  11. Demko, S., Moss, W.F., and Smith, P.W. (1984). Decay rates for inverses of band matrices,Math. Camp.,43(168), 491–499.

    Google Scholar 

  12. Duffin, R.J. and Schaffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Am. Math. Soc., 341–366.

  13. Feichtinger, H.G. and Kozek, W. (1998). Quantization of TF-lattice invariant operators on elementary LCA groups. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 233–266.

    Google Scholar 

  14. Feichtinger, H.G. and Strohmer, T., Eds., (1998).Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston.

    Google Scholar 

  15. Friedlander, B. and Zeira, A. (1995). Oversampled Gabor representations for transient signals.IEEE Trans. Signal Proc,43(9), 2088–2095.

    Google Scholar 

  16. Gabor, D. (1946). Theory of communication,J. IEE (London),93(III), 429–457, November.

    Google Scholar 

  17. Gohberg, I., Goldberg, S., and Kaashoek, M.A. (1993).Classes of linear operators. Vol. II, volume 63 ofOperator Theory: Advances and Applications. Birkhäuser Verlag, Basel.

    Google Scholar 

  18. Gohberg, I. and Kaashoek, M.A. (1994). Projection method for block Toeplitz operators with operator-valued symbols. InToeplitz operators and related topics (Santa Cruz, CA, 1992), volume 71 ofOper. Theory Adv. Appl., Birkhäuser, Basel, 79–104.

    Google Scholar 

  19. Gohberg, I.C. and Fel'dman, I.A. (1974).Convolution equations and projection methods for their solution. American Mathematical Society, Providence, RI, Translated from the Russian by F.M. Goldware, Translations of Mathematical Monographs, Vol. 41.

  20. Gröchenig, K. (1998). Aspects of Gabor analysis on locally compact abelian groups. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 211–231.

    Google Scholar 

  21. Hagen, R., Roch, S., and Silbermann, B. (1995).Spectral theory of approximation methods for convolution equations, volume 74 ofOperator Theory: Advances and Applications. Birkhäuser, Springer-Verlag, Basel.

    Google Scholar 

  22. Havin, V. and Jöricke, B. (1994). The uncertainty principle in harmonic analysis,Ergebnisse der Mathematik und ihrer Grenzgebiete, 3(28), Springer-Verlag, Berlin.

    Google Scholar 

  23. Jaffard, S. (1990). Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications.Ann. Inst. H. Poincaré Anal. Non Linéaire,7(5), 461–476.

    Google Scholar 

  24. Jaffard, S. and Meyer, Y. (1989). Bases d'ondelettes dans des ouverts de ℝn,J. Math. Pures Appl. (9),68(1), 95–108.

    Google Scholar 

  25. Janssen, A.J.E.M. (1997). sampling,J. Four. Anal. Appl.,3(5), 583–596.

    Google Scholar 

  26. Janssen, A.J.E.M. (1995). Duality and biorthogonality for Weyl-Heisenberg frames,J. Four. Anal. Appl.,1(4), 403–436.

    Google Scholar 

  27. Janssen, A.J.E.M. (1996). Some Weyl-Heisenberg frame bound calculations,Indag. Mathem.,7(2), 165–182.

    Google Scholar 

  28. Janssen, A.J.E.M. (1998). The duality condition for Weyl-Heisenberg frames. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 33–84.

    Google Scholar 

  29. Lai, M.L. (1994). On the computation of Battle-Lemarié's wavelets,Math. Comp.,63(208), 689–699.

    Google Scholar 

  30. Ron, A. and Shen, Z. (1995). Frames and stable bases for shift-invariant subspaces L2(ℝd),Can. J. Math.,47(5), 1051–1094.

    Google Scholar 

  31. Ron, A. and Shen, Z. (1997). Affine systems in L2(Rd): the analysis of the analysis operator,J. Funct. Anal.,148(2), 408–447.

    Google Scholar 

  32. Strohmer, T. (1998). Numerical algorithms for discrete Gabor expansions. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 267–294.

    Google Scholar 

  33. Tolimieri, R. and An, M. (1998).Time-frequency representations, Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA.

    Google Scholar 

  34. Vetterli, M. and Kovacevic, J. (1995).Wavelets and Subband Coding. Signal Processing Series. Prentice Hall, Engle-wood Cliffs, NJ.

    Google Scholar 

  35. Wexler, J. and Raz, S. (1990). Discrete Gabor expansions.Signal Processing,21(3), 207–221, November.

    Google Scholar 

  36. Young, R. (1980).An Introduction to Nonharmonic Fourier Series. Academic Press, New York.

    Google Scholar 

  37. Zizler, P., Taylor, K.F., and Arimoto, S. (1997). The Courant-Fischer theorem and the spectrum of selfadjoint block band Toeplitz operators.Integral Equations Operator Theory,28(2), 245–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Richard Tolimieri

Part of this work was done while the author was a visitor at the Department of Statistics at the Stanford University.

The author has been partially supported by Erwin-Schrödinger scholarship J01388-MAT of the Austrian Science foundation FWF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohmer, T. Rates of convergence for the approximation of dual shift-invariant systems in ℓ2(ℤ). The Journal of Fourier Analysis and Applications 5, 599–615 (1999). https://doi.org/10.1007/BF01257194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257194

Math Subject Classifications

Keywords and Phrases

Navigation